
Guaranteed Primitive Redex Speculation
(Work in Progress)

Colin Runciman

Department of Computer Science, University of York



Running Example: N-Queens Program

[6, 1, 5, 2, 8, 3, 7, 4]

Compute all solutions for a given no. of queens:
queens :: Int -> [[Int]]



Primitive Speculation Illustrated

Consider the safe function:

safe :: Int -> Int -> [Int] -> Bool
safe x d [] = True
safe x d (q:qs) = x /= q && x /= q+d && x /= q-d &&

safe x (d+1) qs

Tracing the program by hand, we need to evaluate safe 1 1 [2].
Do we use mere substitution

1 /= 2 && 1 /= 2+1 && 1 /= 2-1 && safe 1 (1+1) []

or a little speculation

True && 1 /= 3 && 1 /= 1 && safe 1 2 []

and what does our computer do?



Context: The Reduceron

I The Reduceron is a graph-reduction machine, described by a
functional program, and implemented using reconfigurable
hardware (FPGA).

I The Reduceron works by template instantiation, reducing
function applications by substituting arguments in bodies.



Reduceron Characteristics

The size of compiled bodies is bounded so that by using wide
parallel memories bodies are instantiated in a single clock cycle.

Primitive redexes in instances of function bodies are detected
dynamically for primitive redex speculation.

The sizes of bodies containing primitive applications are
reckoned as if every primitive-redex test fails.



Reduceron Characteristics

The size of compiled bodies is bounded so that by using wide
parallel memories bodies are instantiated in a single clock cycle.

Primitive redexes in instances of function bodies are detected
dynamically for primitive redex speculation.

The sizes of bodies containing primitive applications are
reckoned as if every primitive-redex test fails.



Detecting Guaranteed PRS Candidates Statically

Goal
Find the primitive applications whose every run-time instance is
guaranteed to be a redex.

Method?
Suppose we propagate integer-value information:

I inwards from program input;

I outwards from numeric literals;

I onwards through primitive redex speculation.

Example

In safe we find just one guaranteed primitive redex

safe x d (q:qs) = x /= q && x /= q+d && x /= q-d &&
safe x (d+1) qs

as both x and q are drawn from data structures.



Valuable data structures

Definition
Let D be a data expression that evaluates to the construction
C e1 . . . en. D is valuable if each integer component ei is a value,
and each data component ei is valuable.

Example

toOne :: Int -> [Int]
toOne n = if n==1 then [1] else n : toOne (n-1)

If n is a value, then toOne n is valuable.

Revisiting safe

With information about valuable data structures, the guaranteed
primitive redexes become:

safe x d (q:qs) = x /= q && x /= q+d && x /= q-d &&
safe x (d+1) qs



Values in Higher-order Programs

The result just noted is for a first order version of queens.

A solution by comprehension

queens nq = gen nq nq

gen 0 nq = [[]]
gen n nq = [q:b | b <- gen (n-1) nq, q <- [1..nq],

safe q 1 b]

translates to applications of higher-order functions.



Valuable functions

Definition
A value function is a primitive. A valuable function gives a
valuable result if each of its arguments is a value or valuable.

I Constructors are valuable.

I Partial applications of valuable functions to values and
valuable arguments are valuable.

Example

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

append xs ys = foldr (:) ys xs
concat = foldr append []

Can you verify that append and concat are both valuable?



Non-uniform Valuations — a Problem?

I What if for some applications of a function there is scope for
primitive-redex speculation in the body but for others there is
not? Or if in some cases a body is valuable, but in others not?

I No uniform guarantee can be given, but we don’t want to lose
speculative evaluation in the cases where it is possible.

Example

toOne :: Int -> [Int]
toOne n = if n==1 then [1] else n : toOne (n-1)

I In one place toOne 8.

I In another toOne (length (queens 8)).



Cloning and specialization

I Solution: clone by need, specialising functions for different
combinations of value/valuable argument positions.

I In principle, the number of clones could be exponential in the
arity of a function. In practice, there is often just one
specialization needed — and the original is discarded.

Recall:

toOne :: Int -> [Int]
toOne n = if n==1 then [1] else n : toOne (n-1)

I Original: n might not be a value; the result is not valuable; the
function is recursive with argument n-1 passed unevaluated.

I Clone: n is a value; the result is valuable; the function is
recursive with argument n-1 reduced speculatively.



Value and Strictness

I An n-ary function f is strict in its mth argument if
f e1 . . . em−1 ⊥ em+1 . . . en = ⊥.

I Since the early ’80s optimizing functional-language compilers
have used strictness to justify eager evaluation, avoiding the
work of building expressions on the heap.

I Analysis of deeper forms of strictness for data structures and
functions is notoriously expensive, and usually not attempted.

Applicability in N-Queens

The safe function

safe x d (q:qs) = x /= q && x /= q+d && x /= q-d &&
safe x (d+1) qs

is strict in x — but x is invariant. It is not strict in d. Nor is it
spine-strict in the list argument. Not much help!



Value and Type

I Since the early ’90s, some lazy functional languages or
compilers allow distinct types for unboxed values such as
integers never stored as unevaluated expressions.

I The worker-wrapper transformation can introduce unboxed
types automatically.

Applicability in N-Queens

A worker for the safe function might be

safe :: #Int -> #Int -> [Int] -> Bool
safe x d (q:qs) = let q’ = value q in

x /= q’ && x /= q’+d && x /= q’-d &&
safe x (d+1) qs

but unboxing of q values is likely to require explicit programming.

Courtesy reference to Graham H’s work!



Performance Results

The current dynamic implementation of primitive-redex
speculation gives a 2× speedup for queens.

There is only a prototype of the first-order value analysis,
with specialisation of clones. Higher-order analysis and the
adaptation of the Reduceron for guaranteed primitive redexes are
yet to be implemented.

But I expect another 2× speedup for queens!



Performance Results

The current dynamic implementation of primitive-redex
speculation gives a 2× speedup for queens.

There is only a prototype of the first-order value analysis,
with specialisation of clones. Higher-order analysis and the
adaptation of the Reduceron for guaranteed primitive redexes are
yet to be implemented.

But I expect another 2× speedup for queens!



Acknowledgements

The Reduceron project is joint work,
with post-doc researcher

Matthew Naylor
as the principal architect and builder,

and funding from


