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“I wonder how popular Haskell needs to

become for Intel to optimize their processors

for my runtime, rather than the other way

around.”

Simon Marlow, 2009
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The Reduceron

Special-purpose graph-reduction machine. (Naylor and
Runciman, 2007 & 2010)

Implemented on a Field Programmable Gate Array. (FPGA)

Evaluates a lazy functional language;

Close to subsets of Haskell 98 and Clean.
Algebraic data types.
Uniform pattern matching by construction.
Local recursive variable bindings.
Primitive integer operations. (+, −, =, ≤, 6=, emit, emitInt)

Exploits low-level parallelism and wide memory channels in
reductions.

See ICFP’10 paper “The Reduceron Reconfigured”.
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Our source language

prog := f vs = x (declarations)

exp := v (variables)

| c (constructors)

| f (functions)

| f P (primitive function)

| n (integers)

| x xs (applications)

| case x of c vs → y

| let v = x in y
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An example

foldl f z xs = case xs of {

Nil → z;

Cons y ys → foldl f (f z y) ys };

map f xs = case xs of {

Nil → Nil;

Cons y ys → Cons (f y) (map f ys) };

plus x y = (+) x y;

sum = foldl plus 0;

double x = (+) x x;

sumDouble xs = sum (map double xs);

range x y = case ( ≤ ) x y of {

True → Cons x (range ((+) x 1) y);

False → Nil };

main = emitInt (sumDouble (range 0 10000)) 0;
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After case elimination

foldl f z xs = xs [foldl#1,foldl #2] f z;

foldl#1 y ys t f z = foldl f (f z y) ys;

foldl#2 t f z = z;

map f xs = xs [map#1,map#2] f;

map#1 y ys t f = Cons (f y) (map f ys);

map#2 t f = Nil;

plus x y = (+) x y;

sum = foldl plus 0;

double x = (+) x x;

sumDouble xs = sum (map double xs);

range x y = ( ≤ ) x y [range#1,range #2] x y;

range#1 t x y = Nil;

range#2 t x y = Cons x (range ((+) x 1) y);

main = emitInt (sumDouble (range 0 10000)) 0;
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Reduction of an expression

range 0 10

= { Instantiate function body (1 cycle) }

( ≤ ) 0 10 [range#1,range #2] 0 10

= { Primitive application (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

Four cycles to reduce to HNF.
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Reduceron performance

The Reduceron is running on a Xilinx Virtex-5 FPGA clocking
at 96 MHz.

Compare with an Intel Core 2 Duo E8400 clocking at 3 GHz.

Sixteen benchmark programs.

On average, 4.1x slower than GHC -O2.

On average, 5.1x slower than Clean.
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Primitive redex speculation

range 0 10

= { Instantiate function body (1 cycle) }

( ≤ ) 0 10 [range#1,range #2] 0 10

If tracing reduction by hand, you would evaluate the primitive.

Why not the Reduceron?

Primitive redex speculation (PRS) (currently) evaluates up to
two primitives as the body is instantiated.

Breaks laziness but as we are only dealing with reducible.
primitives, always terminates.

Low cycle cost, often zero!
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Reduction using PRS
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Performance using PRS
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Best speed-up —
Queens by 2.4x.

Taut has a marginal
performance hit but is
the only one.

Nine out of nineteen
examples see a speed-up
of 1.1x or better.



The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Supercompilation

A source-to-source compilation time optimisation

Reduces the program as far as possible at compile-time.

Where an unknown is required, proceeds by case analysis as
far as possible.

Can remove intermediate data structures and specialise
higher-order functions.

Our supercompiler is similar in design to that of Mitchell and
Runciman. (2008)
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Supercompilation
Start

Termination

Drive

Generalise

Tie Children

Tie

Epilogue

Final Inlining with constant 
folding Dead Definition Removal

Generalise the expression

Tie Down the body of the
main function

Simple Termination?

Homeomorphic 
Termination?

No

No

Inline a saturated 
application

Simplify the expression

For each child 
expression;

Yes

Yes

Does an existing 
definition exist?

Tie Down and produce a 
fresh definition.

No

Tie Back to the existing 
definition

Yes
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Drive

1 Inline the first saturated non-primitive application that does
not cause driving to terminate. If all inlines cause termination,
inline the first anyway.

2 Simplify the resulting expression using the twelve applicable
simplifications listed in Peyton Jones and Santos (1994) and
Mitchell and Runciman. (2008)
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Terminal Forms

Simple termination

Terminate if expression is a;

v (free variable)

c (constructor)

n (integer)

v xs (app. to free)

f P xs (prim. app.)

case v of c vs → x

case v xs of c vs → x

case f P xs of c vs → x

Homeomorphic termination

Terminate if the expression
homeomorphically embeds a
previous derivation.

x E y = dive x y ∨ couple x y

dive x y = all ((E) x) (children y)

couple x y = x ≈ y

∧ and (zipWith (E)

(children x)(children y))
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Generalisation

If a homeomorphic embedding is detected, attempt to generalise
the current expression.

1 If expressions are related by coupling, use most specific
generalisation. (Sørensen and Glück, 1995)

2 Otherwise, if the expression does not depend on any local
bindings, lift the subexpression that is coupled with the
embedding. (Adapted from Mitchell and Runciman for a
lambda-less language.)
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Tie

For each child expression;

1 Tie back (fold) — Where possible, replace the expression with
an equivalent application of a previously derived definition.

2 Tie down (residuate) — Otherwise, replace the expression
with an equivalent application of a newly produced definition
and drive the new definition.
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Performance using Supercompilation
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Best speed-up —
Ordlist by 1.5x.

Taut speeds up by 1.4x!

Clausify gets
marginally worse.

Ten out of nineteen
examples see a
performance increase of
more than 1.1%.
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Performance through combined SC and PRS
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Why does sumDouble do so well?

sumDouble supercompiled

h4 v v1 = case (( ≤ ) v1 10000) of {

False → v;

True → h4 ((+) v ((+) v1 v1)) ((+) v1 1) };

main = emitInt (h4 6 3) 0

Gone from eight definitions to just two.

Benefits from the removal of intermediate data structures.

More PRS as the foldl plus expression has been specialised.

Speed-up by a factor of 5.8x!
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Why is Queens disappointing?

Speed-up factor of 2.38x under PRS.

Only 2.04x under SC+PRS.

Supercompiler splits primitive redexes across case alternatives.

The original program evaluated some primitives speculatively
and in parallel.

Supercompiled program does not utilise this feature.

Not a one off, can happen to any program. Just particularly
noticeable in Queens.
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Primitive Lifting

PRS can evaluate up two primitive redexes for free with each
Reduceron body instantiation.

Reduceron bodies map to source language;

1 Function definitions.
2 Case alternatives.

Move the primitive redexes to maximise utilisation of this
feature.

Extract things that are potential primitive redexes as
let-bindings.

Lift the binding to the highest valid body root that has spare
capacity, prioritising the expressions coming through less case
distinctions.
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Return to sumDouble

h4 v v1 = case (( ≤ ) v1 10000) of {

False → v;

True → h4 ((+) v ((+) v1 v1)) ((+) v1 1) };

h4 v v1 = let {

prs = (+) v1 v1;

prs1 = ( ≤ ) v1 10000

} in (case prs1 of {

False → v;

True → let {

prs2 = (+) v1 1;

prs3 = (+) v prs

} in (h4 prs3 prs2)

});
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Return to sumDouble

h4 v v1 = case (( ≤ ) v1 10000) of {

False → v;

True → h4 ((+) v ((+) v1 v1)) ((+) v1 1) };

h4 v v1 = let {

prs = (+) v1 v1;

prs1 = ( ≤ ) v1 10000

} in (case prs1 of {

False → v;

True → let {

prs2 = (+) v1 1;

prs3 = (+) v prs

} in (h4 prs3 prs2)

});
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Laziness vs. Speculation

Supercompilation simplifications are permitted to duplicate
code as long as they do not duplicate computation. e.g.
Let-bindings down case alternatives.

Lifting primitive expressions will bring the duplicate code
above case distinctions.

Doesn’t matter under lazy evaluation.

Wastes resources under speculative evaluation.

Solution: Merge duplicate expressions into a single binding.
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Performance using PRS, SC and Lifting
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Summary

Primitive-heavy programs can benefit from PRS.

Supercompilation can speed up programs by removing
intermediate data structures and specialising higher-order
functions.

Supercompilation aids PRS by making primitive redexes
apparent where they were not previously.

Further transformation is required to maximise utility of PRS.

Results in an average combined speed-up by 1.7x.

With SC, PRS and lifting, the Reduceron is now only 2.5x
slower than GHC -O2 on Intel.
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Conclusions

x86 processors aren’t the only way to execute functional code.

If we rethink our execution, we have to rethink our
optimisations.

PRS and Supercompilation are not just complementary but
synergistic.

Must always ensure that we consider execution model when
developing transformations.
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Further Work

Further investigation of disappointing examples.

Availability analysis;

Better detection of potential primitive redex.
Static PRS. More efficient, raises limit to eight primitive
reductions.

Push on to as GHC -O2 on Intel.
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