
The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Supercompilation and the Reduceron

Jason S. Reich, Matthew Naylor & Colin Runciman
<jason,mfn,colin@cs.york.ac.uk>

3rd July 2010

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

“I wonder how popular Haskell needs to

become for Intel to optimize their processors

for my runtime, rather than the other way

around.”

Simon Marlow, 2009

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

The Reduceron

Special-purpose graph-reduction machine. (Naylor and
Runciman, 2007 & 2010)

Implemented on a Field Programmable Gate Array. (FPGA)

Evaluates a lazy functional language;

Close to subsets of Haskell 98 and Clean.
Algebraic data types.
Uniform pattern matching by construction.
Local recursive variable bindings.
Primitive integer operations. (+, −, =, ≤, 6=, emit, emitInt)

Exploits low-level parallelism and wide memory channels in
reductions.

See ICFP’10 paper “The Reduceron Reconfigured”.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Our source language

prog := f vs = x (declarations)

exp := v (variables)

| c (constructors)

| f (functions)

| f P (primitive function)

| n (integers)

| x xs (applications)

| case x of c vs → y

| let v = x in y

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

An example

foldl f z xs = case xs of {

Nil → z;

Cons y ys → foldl f (f z y) ys };

map f xs = case xs of {

Nil → Nil;

Cons y ys → Cons (f y) (map f ys) };

plus x y = (+) x y;

sum = foldl plus 0;

double x = (+) x x;

sumDouble xs = sum (map double xs);

range x y = case (≤) x y of {

True → Cons x (range ((+) x 1) y);

False → Nil };

main = emitInt (sumDouble (range 0 10000)) 0;

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

After case elimination

foldl f z xs = xs [foldl#1,foldl #2] f z;

foldl#1 y ys t f z = foldl f (f z y) ys;

foldl#2 t f z = z;

map f xs = xs [map#1,map#2] f;

map#1 y ys t f = Cons (f y) (map f ys);

map#2 t f = Nil;

plus x y = (+) x y;

sum = foldl plus 0;

double x = (+) x x;

sumDouble xs = sum (map double xs);

range x y = (≤) x y [range#1,range #2] x y;

range#1 t x y = Nil;

range#2 t x y = Cons x (range ((+) x 1) y);

main = emitInt (sumDouble (range 0 10000)) 0;

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduction of an expression

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

= { Primitive application (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

Four cycles to reduce to HNF.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduction of an expression

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

= { Primitive application (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

Four cycles to reduce to HNF.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduction of an expression

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

= { Primitive application (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

Four cycles to reduce to HNF.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduction of an expression

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

= { Primitive application (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

Four cycles to reduce to HNF.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduction of an expression

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

= { Primitive application (1 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

Four cycles to reduce to HNF.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduceron performance

The Reduceron is running on a Xilinx Virtex-5 FPGA clocking
at 96 MHz.

Compare with an Intel Core 2 Duo E8400 clocking at 3 GHz.

Sixteen benchmark programs.

On average, 4.1x slower than GHC -O2.

On average, 5.1x slower than Clean.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduceron performance

The Reduceron is running on a Xilinx Virtex-5 FPGA clocking
at 96 MHz.

Compare with an Intel Core 2 Duo E8400 clocking at 3 GHz.

Sixteen benchmark programs.

On average, 4.1x slower than GHC -O2.

On average, 5.1x slower than Clean.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduceron performance

The Reduceron is running on a Xilinx Virtex-5 FPGA clocking
at 96 MHz.

Compare with an Intel Core 2 Duo E8400 clocking at 3 GHz.

Sixteen benchmark programs.

On average, 4.1x slower than GHC -O2.

On average, 5.1x slower than Clean.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Primitive redex speculation

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

If tracing reduction by hand, you would evaluate the primitive.

Why not the Reduceron?

Primitive redex speculation (PRS) (currently) evaluates up to
two primitives as the body is instantiated.

Breaks laziness but as we are only dealing with reducible.
primitives, always terminates.

Low cycle cost, often zero!

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Primitive redex speculation

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

If tracing reduction by hand, you would evaluate the primitive.

Why not the Reduceron?

Primitive redex speculation (PRS) (currently) evaluates up to
two primitives as the body is instantiated.

Breaks laziness but as we are only dealing with reducible.
primitives, always terminates.

Low cycle cost, often zero!

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduction using PRS

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

= { Primitive redex speculation (0 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

= { Primitive redex speculation (0 cycle) }

Cons 0 (range 1 10)

Three cycles to reduce further than HNF.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduction using PRS

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

= { Primitive redex speculation (0 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

= { Primitive redex speculation (0 cycle) }

Cons 0 (range 1 10)

Three cycles to reduce further than HNF.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduction using PRS

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

= { Primitive redex speculation (0 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

= { Primitive redex speculation (0 cycle) }

Cons 0 (range 1 10)

Three cycles to reduce further than HNF.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Reduction using PRS

range 0 10

= { Instantiate function body (1 cycle) }

(≤) 0 10 [range#1,range #2] 0 10

= { Primitive redex speculation (0 cycle) }

True [range#1,range #2] 0 10

= { Constructor reduction (0 cycle) }

range #2 [range#1,range #2] 0 10

= { Instantiate function body (2 cycles) }

Cons 0 (range ((+) 0 1) 10)

= { Primitive redex speculation (0 cycle) }

Cons 0 (range 1 10)

Three cycles to reduce further than HNF.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Performance using PRS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

PRS

E
x
e
cu

ti
o
n
 t

im
e
 f

a
ct

o
r

0.788

Quartiles
Geometric Mean

Best speed-up —
Queens by 2.4x.

Taut has a marginal
performance hit but is
the only one.

Nine out of nineteen
examples see a speed-up
of 1.1x or better.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Supercompilation

A source-to-source compilation time optimisation

Reduces the program as far as possible at compile-time.

Where an unknown is required, proceeds by case analysis as
far as possible.

Can remove intermediate data structures and specialise
higher-order functions.

Our supercompiler is similar in design to that of Mitchell and
Runciman. (2008)

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Supercompilation
Start

Termination

Drive

Generalise

Tie Children

Tie

Epilogue

Final Inlining with constant
folding Dead Definition Removal

Generalise the expression

Tie Down the body of the
main function

Simple Termination?

Homeomorphic
Termination?

No

No

Inline a saturated
application

Simplify the expression

For each child
expression;

Yes

Yes

Does an existing
definition exist?

Tie Down and produce a
fresh definition.

No

Tie Back to the existing
definition

Yes

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Drive

1 Inline the first saturated non-primitive application that does
not cause driving to terminate. If all inlines cause termination,
inline the first anyway.

2 Simplify the resulting expression using the twelve applicable
simplifications listed in Peyton Jones and Santos (1994) and
Mitchell and Runciman. (2008)

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Terminal Forms

Simple termination

Terminate if expression is a;

v (free variable)

c (constructor)

n (integer)

v xs (app. to free)

f P xs (prim. app.)

case v of c vs → x

case v xs of c vs → x

case f P xs of c vs → x

Homeomorphic termination

Terminate if the expression
homeomorphically embeds a
previous derivation.

x E y = dive x y ∨ couple x y

dive x y = all ((E) x) (children y)

couple x y = x ≈ y

∧ and (zipWith (E)

(children x)(children y))

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Generalisation

If a homeomorphic embedding is detected, attempt to generalise
the current expression.

1 If expressions are related by coupling, use most specific
generalisation. (Sørensen and Glück, 1995)

2 Otherwise, if the expression does not depend on any local
bindings, lift the subexpression that is coupled with the
embedding. (Adapted from Mitchell and Runciman for a
lambda-less language.)

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Generalisation

If a homeomorphic embedding is detected, attempt to generalise
the current expression.

1 If expressions are related by coupling, use most specific
generalisation. (Sørensen and Glück, 1995)

2 Otherwise, if the expression does not depend on any local
bindings, lift the subexpression that is coupled with the
embedding. (Adapted from Mitchell and Runciman for a
lambda-less language.)

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Tie

For each child expression;

1 Tie back (fold) — Where possible, replace the expression with
an equivalent application of a previously derived definition.

2 Tie down (residuate) — Otherwise, replace the expression
with an equivalent application of a newly produced definition
and drive the new definition.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Performance using Supercompilation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

PRS SC

E
x
e
cu

ti
o
n
 t

im
e
 f

a
ct

o
r

0.788

0.871

Quartiles
Geometric Mean

Best speed-up —
Ordlist by 1.5x.

Taut speeds up by 1.4x!

Clausify gets
marginally worse.

Ten out of nineteen
examples see a
performance increase of
more than 1.1%.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Performance through combined SC and PRS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

PRS SC SC+PRS

E
x
e
cu

ti
o
n
 t

im
e
 f

a
ct

o
r

0.788

0.871

0.647

Quartiles
Geometric Mean

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Why does sumDouble do so well?

sumDouble supercompiled

h4 v v1 = case ((≤) v1 10000) of {

False → v;

True → h4 ((+) v ((+) v1 v1)) ((+) v1 1) };

main = emitInt (h4 6 3) 0

Gone from eight definitions to just two.

Benefits from the removal of intermediate data structures.

More PRS as the foldl plus expression has been specialised.

Speed-up by a factor of 5.8x!

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Why is Queens disappointing?

Speed-up factor of 2.38x under PRS.

Only 2.04x under SC+PRS.

Supercompiler splits primitive redexes across case alternatives.

The original program evaluated some primitives speculatively
and in parallel.

Supercompiled program does not utilise this feature.

Not a one off, can happen to any program. Just particularly
noticeable in Queens.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Primitive Lifting

PRS can evaluate up two primitive redexes for free with each
Reduceron body instantiation.

Reduceron bodies map to source language;

1 Function definitions.
2 Case alternatives.

Move the primitive redexes to maximise utilisation of this
feature.

Extract things that are potential primitive redexes as
let-bindings.

Lift the binding to the highest valid body root that has spare
capacity, prioritising the expressions coming through less case
distinctions.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Return to sumDouble

h4 v v1 = case ((≤) v1 10000) of {

False → v;

True → h4 ((+) v ((+) v1 v1)) ((+) v1 1) };

h4 v v1 = let {

prs = (+) v1 v1;

prs1 = (≤) v1 10000

} in (case prs1 of {

False → v;

True → let {

prs2 = (+) v1 1;

prs3 = (+) v prs

} in (h4 prs3 prs2)

});

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Return to sumDouble

h4 v v1 = case ((≤) v1 10000) of {

False → v;

True → h4 ((+) v ((+) v1 v1)) ((+) v1 1) };

h4 v v1 = let {

prs = (+) v1 v1;

prs1 = (≤) v1 10000

} in (case prs1 of {

False → v;

True → let {

prs2 = (+) v1 1;

prs3 = (+) v prs

} in (h4 prs3 prs2)

});

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Laziness vs. Speculation

Supercompilation simplifications are permitted to duplicate
code as long as they do not duplicate computation. e.g.
Let-bindings down case alternatives.

Lifting primitive expressions will bring the duplicate code
above case distinctions.

Doesn’t matter under lazy evaluation.

Wastes resources under speculative evaluation.

Solution: Merge duplicate expressions into a single binding.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Performance using PRS, SC and Lifting

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

PRS SC SC+PRS SC+L+PRS

E
x
e
cu

ti
o
n
 t

im
e
 f

a
ct

o
r

0.788

0.871

0.647
0.598

Quartiles
Geometric Mean

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Summary

Primitive-heavy programs can benefit from PRS.

Supercompilation can speed up programs by removing
intermediate data structures and specialising higher-order
functions.

Supercompilation aids PRS by making primitive redexes
apparent where they were not previously.

Further transformation is required to maximise utility of PRS.

Results in an average combined speed-up by 1.7x.

With SC, PRS and lifting, the Reduceron is now only 2.5x
slower than GHC -O2 on Intel.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Conclusions

x86 processors aren’t the only way to execute functional code.

If we rethink our execution, we have to rethink our
optimisations.

PRS and Supercompilation are not just complementary but
synergistic.

Must always ensure that we consider execution model when
developing transformations.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Conclusions

x86 processors aren’t the only way to execute functional code.

If we rethink our execution, we have to rethink our
optimisations.

PRS and Supercompilation are not just complementary but
synergistic.

Must always ensure that we consider execution model when
developing transformations.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Conclusions

x86 processors aren’t the only way to execute functional code.

If we rethink our execution, we have to rethink our
optimisations.

PRS and Supercompilation are not just complementary but
synergistic.

Must always ensure that we consider execution model when
developing transformations.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Conclusions

x86 processors aren’t the only way to execute functional code.

If we rethink our execution, we have to rethink our
optimisations.

PRS and Supercompilation are not just complementary but
synergistic.

Must always ensure that we consider execution model when
developing transformations.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Further Work

Further investigation of disappointing examples.

Availability analysis;

Better detection of potential primitive redex.
Static PRS. More efficient, raises limit to eight primitive
reductions.

Push on to as GHC -O2 on Intel.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Further Work

Further investigation of disappointing examples.

Availability analysis;

Better detection of potential primitive redex.
Static PRS. More efficient, raises limit to eight primitive
reductions.

Push on to as GHC -O2 on Intel.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Further Work

Further investigation of disappointing examples.

Availability analysis;

Better detection of potential primitive redex.
Static PRS. More efficient, raises limit to eight primitive
reductions.

Push on to 2.0x as slow as GHC -O2 on Intel.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Further Work

Further investigation of disappointing examples.

Availability analysis;

Better detection of potential primitive redex.
Static PRS. More efficient, raises limit to eight primitive
reductions.

Push on to 1.5x as slow as GHC -O2 on Intel.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Further Work

Further investigation of disappointing examples.

Availability analysis;

Better detection of potential primitive redex.
Static PRS. More efficient, raises limit to eight primitive
reductions.

Push on to same speed as GHC -O2 on Intel.

The Reduceron PRS Supercompilation Primitive Lifting Conclusions

Further Work

Further investigation of disappointing examples.

Availability analysis;

Better detection of potential primitive redex.
Static PRS. More efficient, raises limit to eight primitive
reductions.

Push on to 2.0x as fast as GHC -O2 on Intel.

	The Reduceron
	The Reduceron
	An example
	Performance results

	PRS
	Primitive redex speculation
	Performance results

	Supercompilation
	Supercompilation
	The supercompilation process
	Performance results

	Primitive Lifting
	Performance results
	Primitive Lifting
	Performance results

	Conclusions
	Conclusions

