
Dynamic analysis in

the Reduceron

Matthew Naylor and Colin Runciman

University of York

“I wonder how popular Haskell needs to become for

Intel to optimize their processors for my runtime,

rather than the other way around.”

Simon Marlow, 2009

A question

Underlying problem?

Constraints imposed by conventional processors

make efficient implementations of functional

languages sophisticated and limited.

“Current RISC technology will probably have

increased in speed enough by the time a graph-

reduction chip could be designed and fabricated to

make the exercise pointless.”

Koopman, 1990

Build a machine especially to run functional programs.

Possible solution

But now the situation is different…

Block RAMs

FPGAs (Reconfigurable H/W)

Contain a large set of components that can be

connected together in any desired way.

Widely available, quick to program, autonomous.

Logic Cells
(Gates & Flip-flops)

not restricted by conventional architectural constraints,

A computer designed to run lazy functional programs,

implemented on an FPGA, using a functional language.

The Reduceron

(Origin: Chris Kania)

Graph reduction

Step by step

Graph reduction, step by step

f ys x xs = g x (h xs ys)

Suppose that function f is defined by

where g and h are functions and the following

machine-state arises during reduction.

f

a

b

c g @2

Stack Templates Heap

f: h @3 @1

Operation: f <- Stack[0]

 g <- Code[f]

 g -> Heap

Steps: 3

f

a

b

c

Stack Heap

g g @2 f: h @3 @1

Templates

Graph reduction, step by step

Operation: arg <- Code[f+1]

 b <- Stack[arg]

 b -> Heap

Steps: 6

f

a

b

c

Stack Heap

g b g @2 f: h @3 @1

Templates

Graph reduction, step by step

Operation: ptr <- Code[f+2]

 ptr’ -> Heap

Steps: 8

f

a

b

c

Stack Heap

g b g @2 f: h @3 @1

Templates

Graph reduction, step by step

Operation: h <- Code[f+3]

 h -> Heap

Steps: 10

f

a

b

c

Stack Heap

g b g @2 f: h @3 @1 h

Templates

Graph reduction, step by step

Operation: arg <- Code[f+4]

 c <- Stack[arg]

 c -> Heap

Steps: 13

f

a

b

c

Stack Heap

g b g @2 f: h @3 @1 h c

Templates

Graph reduction, step by step

Operation: arg <- Code[f+5]

 a <- Stack[arg]

 a -> Heap

Steps: 16

f

a

b

c

Stack Heap

g b g @2 f: h @3 @1 h c a

Templates

Graph reduction, step by step

The von Neumann Bottleneck

One word at a time.

Each of the 16 memory

transactions is done

sequentially.

Widening the bottleneck

Widening the bottleneck, again

Many words at a time.

Applying a function “in one go”

f

a

b

c

Stack Heap

g b g @2 f: h @3 @1 h c a

Templates

The function f is applied in a single clock cycle.

Reduceron “instruction set”

Operation Clock cycles

Apply n/2

Unwind 1

Update 1

Primitive Apply 1

Where n = number of applications in function body.

Template instantiation?

Yes, the Reduceron actually does

template instantiation!

But what about the G-machine and the ABC machine?

Template instantiation

“This chapter introduces the simplest possible

implementation of a functional language: a

graph-reducer based on template instantiation”

Simon Peyton Jones, 1992

Dynamic analysis (1)

Update avoidance

Shared pointers

unshared applications, and

possibly-shared applications.

Distinguish between:

Idea: When an unshared application is

reduced to normal form, no update is needed.

Dynamic vs. static analysis

“Create all closures as [unshared], and

dynamically change their tag to [possibly-

shared] if they become shared. We call

this operation dashing.”

“In general we strongly suspect that the

cost of dashing greatly outweighs the

advantages of precision when compared

to the [static analysis] method.”

Peyton Jones, 1988

Dashing when applying

s

f

g

x
@1 @3

Stack Templates

s: @2 @3

Heap

When the function s, containing two references

to its 3rd argument, is applied,

Dashing when applying

s

f

g

x
@1 @3

Stack

s: @2 @3

When the function s, containing two references

to its 3rd argument, is applied,

the 3rd argument is dashed.

Heap

f x g x

Templates

Dashing when applying

inst :: Reduceron -> Atom -> Atom

inst r a =

 pick

 [a!isARG --> dash (a!isArgShared) x

 , a!isAP -->

 makeAP (a!isShared)

 (r!heap!size + a!pointer)

 , otherwise --> a

]

 where

 otherwise = inv (a!isARG <|> a!isAP)

 x = pick (zip (a!argIndex!velems)

 (r!vstack!tops!velems))

Dashing when unwinding

x

c

Stack Heap

f a x: b

When a pointer x to a shared application appears

on top of the stack,

Dashing when unwinding

c

Stack Heap

f a x: b

When a pointer x to a shared application appears

on top of the stack,

f

a

b

the unwound application is dashed.

Dashing when unwinding
unwind :: Reduceron -> Recipe

unwind r =

 Seq [

 r!newTop <== vhead as

 , r!vstack!update n (unwindMask n)

 (as!vtail!velems)

 , app!hasAlts |> r!astack!push (app!alts)

 , upd |> r!ustack!push

 (makeUpdate (r!vstack!size)

 (r!top!pointer))

]

 where

 app = r!heap!outputB

 n = app!appArity

 as = vmap (dash sh) (app!atoms)

 sh = r!top!isShared

 upd = sh <&> inv (app!isNF)

Dashing when updating

Stack Heap

f a x:

C

a

as
b

When a normal-form is reached,

Dashing when updating

Stack Heap

C a x:

C

a

as
as

When a normal-form is reached,

it is copied onto the heap, overwriting the original

application, and its arguments are dashed.

Dashing in the Reduceron

In each of the three cases, dashing

is just bit-flipping under some

simple-to-compute conditions.

Normal-form updates avoided

0

10

20

30

40

50

60

70

80

90

100

Mean = 56.2%

Total updates avoided

0

10

20

30

40

50

60

70

80

90

100

Mean = 56.2%

Mean = 87.2%

% runtime saving

0

5

10

15

20

25

30

35

40

45

50

Mean = 21.5%

Dynamic analysis (2)

Speculative evaluation of primitive redexes (PRS)

Primitive redexes

f x xs a = g (x+a) xs

Suppose that function f is defined by

where g is a function, and + is primitive addition.

f

5

xs

2 g @2

Stack Templates Heap

f:

@1 + @3

Primitive redexes

Application of f results in the primitive redex

5+2 being instantiated on the heap.

g @2

Stack Heap

f:

@1 + @3

g xs

5 + 2

f

5

xs

2

Templates

Speculative evaluation

Idea: At instantiation time, look at the arguments

in a primitive application. If they are already

evaluated, apply the primitive speculatively.

g @2

Stack Heap

f:

@1 + @3

f

5

xs

2
g 7 xs

Templates

% runtime saving, due to PRS

-10

0

10

20

30

40

50

Mean = 12%

amount of primitive reduction

Example of PRS success

enum n m = if n <= m

 then Cons n (enum (n+1) m)

 else Nil

 enum 0 10

=

Function to enumerate a range of integers:

We wish to evaluate: enum 0 10

Example of PRS success

enum n m = if n <= m

 then Cons n (enum (n+1) m)

 else Nil

 enum 0 10

= if 0 <= 1

 then Cons 0 (enum (0+1) 10)

 else Nil

Function to enumerate a range of integers:

We wish to evaluate: 0 10 enum

Example of PRS success

enum n m = if n <= m

 then Cons n (enum (n+1) m)

 else Nil

 enum 0 10

= if True

 then Cons 0 (enum 1 10)

 else Nil

Function to enumerate a range of integers:

We wish to evaluate: 0 10 enum

Example of PRS success

enum n m = if n <= m

 then Cons n (enum (n+1) m)

 else Nil

 enum 0 10

= if True

 then Cons 0 (enum 1 10)

 else Nil

= Cons 0 (enum 1 10)

Function to enumerate a range of integers:

We wish to evaluate: 0 10 enum

Example of PRS failure

enum n m = if n <= m

 then Cons n (enum (n+1) m)

 else Nil

 enum x 10

=

Function to enumerate a range of integers:

We wish to evaluate: y enum 10 x: f

Example of PRS failure

enum n m = if n <= m

 then Cons n (enum (n+1) m)

 else Nil

 enum x 10

= if x <= 10

 then Cons x (enum (x+1) 10)

 else Nil

Function to enumerate a range of integers:

We wish to evaluate: y enum 10 x: f

Example of PRS failure

enum n m = if n <= m

 then Cons n (enum (n+1) m)

 else Nil

 enum x 10

= if x <= 10

 then Cons x (enum (x+1) 10)

 else Nil

= Cons x (enum (x+1) 10)

Function to enumerate a range of integers:

We wish to evaluate: enum 10 x: 3

Possible solutions

Option 1: Worker/wrapper transformation.

Since enum is strict, introduce enumWrap

which forces n and m before passing them to

enum.

Option 2: Update the stack. Leave evaluated

arguments of conditional primitives on the

stack, to be observed by case alternatives.

Conclusions

The Reduceron enjoys many freedoms.

Dynamic analysis can be very attractive.

There is a lot of low-level parallelism to

exploit even in “sequential” graph reduction.

Still to come: Parallel reduction, PRS is just

the beginning, and compiler optimisation.

Quick progress report

Speed-up factor, since IFL’07

1

3

5

7

9

11

13

15

My desk

Intel Core 2 Duo E8400

 * 6M Cache

 * 3.00 GHz

 * 1333 MHz FSB

 * Released in 2008

Xilinx Virtex 5 FPGA

 * LX110T (mid-range)

 * Speed-grade 1 (lowest)

 * Released in 2006

Reduceron synthesis results

Fmax 110Mhz

Slice usage 2284 (13%)

LUTs 5865 (8%)

Flip-flops 1018 (1%)

BRAM usage 4.7 megabits (89%)

NOTE: memory capacity is very small – could be

enhanced by moving the heap into off-chip memory.

Slow-down factor, against PC

1

2

3

4

5

6

7

8

9
GHC -O2

Clean

Acknowledgements

This research is supported by EPSRC grant

EP/G011052/1.

Thanks to the Xilinx University Program for

donating the FPGA and development board.

Thanks to Satnam Singh for his advice and

contacts which enabled us to obtain this

board. The money saved has been used to

extend my contract by three months!

Megabits of block RAM, over time

0

5

10

15

20

25

30

35

40

45

Virtex II (2000) Virtex 4 (2004) Virtex 5 (2006) Virtex 6 (2009)

An off-chip heap

• Heap could be moved into off-chip RAM.

– To cater for memory-hungry programs.

• Should be possible without modifying

existing design significantly.

– Modern memory chips clock much higher

than 110Mhz.

– Example: reduced-latency RAM (4-cycle

access) clocking at over 400Mhz.

% runtime spent on arithmetic

0

5

10

15

20

25

30

35
Mean = 12%

