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“I wonder how popular Haskell needs to become for 

Intel to optimize their processors for my runtime, 

rather than the other way around.” 

Simon Marlow, 2009 

A question 



Underlying problem? 

Constraints imposed by conventional processors 

make efficient implementations of functional 

languages sophisticated and limited. 



“Current RISC technology will probably have 

increased in speed enough by the time a graph-

reduction chip could be designed and fabricated to 

make the exercise pointless.” 

Koopman, 1990 

Build a machine especially to run functional programs. 

Possible solution 

But now the situation is different… 



Block RAMs 

FPGAs (Reconfigurable H/W) 

Contain a large set of components that can be 

connected together in any desired way. 

Widely available, quick to program, autonomous. 

Logic Cells 
(Gates & Flip-flops) 



not restricted by conventional architectural constraints, 

A computer designed to run lazy functional programs, 

implemented on an FPGA, using a functional language. 

The Reduceron 

(Origin: Chris Kania) 



Graph reduction 

Step by step 



Graph reduction, step by step 

f ys x xs = g x (h xs ys) 

Suppose that function f is defined by 

where g and h are functions and the following 

machine-state arises during reduction. 

f 

a 

b 

c g @2 

Stack Templates Heap 

f: h @3 @1 



Operation:  f <- Stack[0] 

   g <- Code[f] 

   g -> Heap 

Steps:  3 

f 
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Stack Heap 

g g @2 f: h @3 @1 

Templates 

Graph reduction, step by step 



Operation:  arg <- Code[f+1] 

   b   <- Stack[arg] 

   b   -> Heap 

Steps:  6 

f 

a 

b 

c 

Stack Heap 

g b g @2 f: h @3 @1 

Templates 

Graph reduction, step by step 



Operation:  ptr  <- Code[f+2] 

   ptr’ -> Heap 

Steps:  8 
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Stack Heap 

g b g @2 f: h @3 @1 

Templates 

Graph reduction, step by step 



Operation:  h <- Code[f+3] 

   h -> Heap 

Steps:  10 

f 
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b 

c 

Stack Heap 

g b g @2 f: h @3 @1 h 

Templates 

Graph reduction, step by step 



Operation:  arg <- Code[f+4] 

   c   <- Stack[arg] 

   c   -> Heap 

Steps:  13 

f 

a 

b 

c 

Stack Heap 

g b g @2 f: h @3 @1 h c 

Templates 

Graph reduction, step by step 



Operation:  arg <- Code[f+5] 

   a   <- Stack[arg] 

   a   -> Heap 

Steps:  16 

f 

a 

b 

c 

Stack Heap 

g b g @2 f: h @3 @1 h c a 

Templates 

Graph reduction, step by step 



The von Neumann Bottleneck 

One word at a time. 

Each of the 16 memory 

transactions is done 

sequentially. 



Widening the bottleneck 



Widening the bottleneck, again 

Many words at a time. 



Applying a function “in one go” 

f 

a 

b 

c 

Stack Heap 

g b g @2 f: h @3 @1 h c a 

Templates 

The function f is applied in a single clock cycle. 



Reduceron “instruction set” 

Operation   Clock cycles 

 

Apply     n/2 

Unwind   1 

Update   1 

Primitive Apply  1 

Where n = number of applications in function body. 



Template instantiation? 

Yes, the Reduceron actually does 

template instantiation! 

But what about the G-machine and the ABC machine? 



Template instantiation 

“This chapter introduces the simplest possible 

implementation of a functional language: a 

graph-reducer based on template instantiation” 

Simon Peyton Jones, 1992 



Dynamic analysis (1) 

Update avoidance 



Shared pointers 

unshared applications, and 

possibly-shared applications.
 

Distinguish between:
 

Idea: When an unshared application is 

reduced to normal form, no update is needed.
 



Dynamic vs. static analysis 

                                                                     

“Create all closures as [unshared], and 

dynamically change their tag to [possibly-

shared] if they become shared.  We call 

this operation dashing.”
 

                                                                     

“In general we strongly suspect that the 

cost of dashing greatly outweighs the 

advantages of precision when compared 

to the [static analysis] method.” 
 

Peyton Jones, 1988 



Dashing when applying 

s 

f 

g 

x 
@1 @3 

Stack Templates 

s: @2 @3 

Heap 

When the function s, containing two references 

to its 3rd argument, is applied, 



Dashing when applying 

s 

f 

g 

x 
@1 @3 

Stack 

s: @2 @3 

When the function s, containing two references 

to its 3rd argument, is applied, 

the 3rd argument is dashed. 

Heap 

f x g x 

Templates 



Dashing when applying 

inst :: Reduceron -> Atom -> Atom 

inst r a = 

  pick 

   [ a!isARG   --> dash (a!isArgShared) x 

   , a!isAP    --> 

       makeAP (a!isShared) 

              (r!heap!size + a!pointer) 

   , otherwise --> a 

   ] 

  where 

   otherwise = inv (a!isARG <|> a!isAP) 

   x = pick (zip (a!argIndex!velems) 

                 (r!vstack!tops!velems)) 

    



Dashing when unwinding 

x 

c 

Stack Heap 

f a x: b 

When a pointer x to a shared application appears 

on top of the stack, 



Dashing when unwinding 

c 

Stack Heap 

f a x: b 

When a pointer x to a shared application appears 

on top of the stack, 

f 

a 

b 

the unwound application is dashed. 



Dashing when unwinding 
unwind :: Reduceron -> Recipe 

unwind r = 

 Seq [ 

   r!newTop <== vhead as 

 , r!vstack!update n (unwindMask n) 

                     (as!vtail!velems) 

 , app!hasAlts |> r!astack!push (app!alts) 

 , upd |> r!ustack!push 

           (makeUpdate (r!vstack!size)                    

                       (r!top!pointer)) 

 ] 

 where 

  app = r!heap!outputB 

  n   = app!appArity 

  as  = vmap (dash sh) (app!atoms) 

  sh  = r!top!isShared 

  upd = sh <&> inv (app!isNF) 



Dashing when updating 

Stack Heap 

f a x: 

C 

a 

as 
b 

When a normal-form is reached, 



Dashing when updating 

Stack Heap 

C a x: 

C 

a 

as 
as 

When a normal-form is reached, 

it is copied onto the heap, overwriting the original 

application, and its arguments are dashed. 



Dashing in the Reduceron 

In each of the three cases, dashing 

is just bit-flipping under some 

simple-to-compute conditions. 



Normal-form updates avoided 
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Total updates avoided 
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Mean = 87.2% 



% runtime saving 
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Dynamic analysis (2) 

Speculative evaluation of primitive redexes (PRS) 



Primitive redexes 

f x xs a  = g (x+a) xs 

Suppose that function f is defined by 

where g is a function, and + is primitive addition. 

f 

5 

xs 

2 g @2 

Stack Templates Heap 

f: 

@1 + @3 



Primitive redexes 

Application of f results in the primitive redex 

5+2 being instantiated on the heap. 

g @2 

Stack Heap 

f: 

@1 + @3 

g xs 

5 + 2 

f 

5 

xs 

2 

Templates 



Speculative evaluation 

Idea: At instantiation time, look at the arguments 

in a primitive application. If they are already 

evaluated, apply the primitive speculatively. 

g @2 

Stack Heap 

f: 

@1 + @3 

f 

5 

xs 

2 
g 7 xs 

Templates 



% runtime saving, due to PRS 
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Example of PRS success 

enum n m = if   n <= m 

           then Cons n (enum (n+1) m) 

           else Nil 

  enum 0 10 

= 

Function to enumerate a range of integers: 

We wish to evaluate: enum 0 10 



Example of PRS success 

enum n m = if   n <= m 

           then Cons n (enum (n+1) m) 

           else Nil 

  enum 0 10 

= if   0 <= 1 

  then Cons 0 (enum (0+1) 10) 

  else Nil 

Function to enumerate a range of integers: 

We wish to evaluate: 0 10 enum 



Example of PRS success 

enum n m = if   n <= m 

           then Cons n (enum (n+1) m) 

           else Nil 

  enum 0 10 

= if   True 

  then Cons 0 (enum 1 10) 

  else Nil 

 

 

Function to enumerate a range of integers: 

We wish to evaluate: 0 10 enum 



Example of PRS success 

enum n m = if   n <= m 

           then Cons n (enum (n+1) m) 

           else Nil 

  enum 0 10 

= if   True 

  then Cons 0 (enum 1 10) 

  else Nil 

= Cons 0 (enum 1 10) 

 

 

Function to enumerate a range of integers: 

We wish to evaluate: 0 10 enum 



Example of PRS failure 

enum n m = if   n <= m 

           then Cons n (enum (n+1) m) 

           else Nil 

  enum x 10 

= 

Function to enumerate a range of integers: 

We wish to evaluate: y enum 10 x: f 



Example of PRS failure 

enum n m = if   n <= m 

           then Cons n (enum (n+1) m) 

           else Nil 

  enum x 10 

= if   x <= 10 

  then Cons x (enum (x+1) 10) 

  else Nil 

 

Function to enumerate a range of integers: 

We wish to evaluate: y enum 10 x: f 



Example of PRS failure 

enum n m = if   n <= m 

           then Cons n (enum (n+1) m) 

           else Nil 

  enum x 10 

= if   x <= 10 

  then Cons x (enum (x+1) 10) 

  else Nil 

= Cons x (enum (x+1) 10) 

 

Function to enumerate a range of integers: 

We wish to evaluate: enum 10 x: 3 



Possible solutions 

Option 1: Worker/wrapper transformation. 

Since enum is strict, introduce enumWrap 

which forces n and m before passing them to 

enum. 

Option 2: Update the stack. Leave evaluated 

arguments of conditional primitives on the 

stack, to be observed by case alternatives. 



Conclusions 

The Reduceron enjoys many freedoms. 

 

Dynamic analysis can be very attractive. 

 

There is a lot of low-level parallelism to 

exploit even in “sequential” graph reduction. 

 

Still to come: Parallel reduction, PRS is just 

the beginning, and compiler optimisation. 



Quick progress report 



Speed-up factor, since IFL’07 
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My desk 

Intel Core 2 Duo E8400  

  * 6M Cache 

  * 3.00 GHz 

  * 1333 MHz FSB 

  * Released in 2008 

Xilinx Virtex 5 FPGA 

  * LX110T (mid-range) 

  * Speed-grade 1 (lowest) 

  * Released in 2006 



Reduceron synthesis results 

Fmax     110Mhz 

Slice usage  2284  (13%) 

LUTs   5865   (8%) 

Flip-flops  1018   (1%) 

BRAM usage  4.7 megabits (89%) 

NOTE: memory capacity is very small – could be 

enhanced by moving the heap into off-chip memory. 



Slow-down factor, against PC 
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Megabits of block RAM, over time 
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An off-chip heap 

• Heap could be moved into off-chip RAM. 

– To cater for memory-hungry programs. 

 

• Should be possible without modifying 

existing design significantly. 

– Modern memory chips clock much higher 

than 110Mhz. 

– Example: reduced-latency RAM (4-cycle 

access) clocking at over 400Mhz. 



% runtime spent on arithmetic 
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