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Abstract. For the memory intensive task of graph reduction, modern
PCs are limited not by processor speed, but by the rate that data can
travel between processor and memory. This limitation is known as the
von Neumann bottleneck. We explore the effect of widening this bottle-
neck using a special-purpose graph reduction machine with wide, parallel
memories. Our prototype machine – the Reduceron – is implemented us-
ing an FPGA, and is based on a simple template-instantiation evaluator.
Running at only 91.5MHz on an FPGA, the Reduceron is faster than
mature bytecode implementations of Haskell running on a 2.8GHz PC.

1 Introduction

The processing power of PCs has risen astonishingly over the past few decades,
and this trend looks set to continue with the introduction of multi-core CPUs.
However, increased processing power does not necessarily mean faster programs!
Many programs, particularly memory intensive ones, are limited by the rate
that data can travel between the CPU and the memory, not by the rate that the
CPU can process data.

A prime example of a memory intensive application is graph reduction [14],
the operational basis of standard lazy functional language implementations. The
core operation of graph reduction is function unfolding, whereby a function ap-
plication f a1 · · ·an is reduced to a fresh copy of f ’s body with its free variables
replaced by the arguments a1 · · · an. On a PC, unfolding a single function in
this way requires the sequential execution of many machine instructions. This
sequentialisation is merely a consequence of the PC’s von Neumann architecture,
not of any data dependencies in the reduction process.

In an attempt to improve upon the PC’s overly-sequential approach to func-
tion unfolding, we develop a special-purpose graph reduction machine – the
Reduceron – using an FPGA. Modern FPGAs contain hundreds of independent
memory units called block RAMs, each of which can be accessed in parallel. The
Reduceron cascades these block RAMs to form separate dual-port, quad-word
memories for stack, heap and combinator storage, meaning that up to eight
words can be transferred between two memories in a single clock cycle. Together



with vectorised processing logic, the wide, parallel memories allow the Reduc-
eron to rapidly execute the block read-modify-write memory operations that lie
at the heart of function unfolding.

The Reduceron is only a prototype machine, based on a simple template-
instantiation evaluator, and the Reduceron compiler performs no optimisation.
Yet the results are promising. The wide implementation of the Reduceron runs
six times faster than a single-memory, one-word-at-a-time version. And running
at 91.5MHz on a Xilinx Virtex-II FPGA, the Reduceron is faster than mature
bytecode implementations of Haskell running on a Pentium-4 2.8GHz PC.

This paper is structured as follows. Section 2 defines the bytecode that the
Reduceron executes, and describes how Haskell programs are compiled down
to it. Section 3 presents a small-step operational semantics of the Reduceron,
pin-pointing the parts of the evaluator that can be executed in parallel. Section
4 describes the FPGA implementation of the Reduceron. Section 5 presents
performance measurements, comparisons and possible enhancements. Section 6
discusses related work, and section 7 concludes.

The source code for the Reduceron implementation is publicly available from
http://www.cs.york.ac.uk/fp/darcs/reduceron2.

2 Compilation from Haskell to Reduceron bytecode

There are two main goals of our compilation scheme. First, it should allow the
Reduceron to be simple, so that the implementation can be constructed in good
time. To this aim, we adopt the idea of Jansen to encode data constructors as
functions and case expressions as function applications [9]. The result is that all
data constructors and case expressions are eliminated, meaning fewer language
constructs for the machine to deal with. One might expect to pay a price for this
simplicity, yet Jansen’s interpreter is rather fast in practice. It is believed that
one reason for this good performance is that having fewer language constructs
permits a simpler interpreter with less interpretive overhead.

The second goal of our compiler is to expose the parallelism present in se-
quential graph reduction. An earlier version of the Reduceron was based on
Turner’s combinators, so it performed only a small amount of work in each clock
cycle. Our aim is to do lots of work in each clock cycle, so the coarser-grained
supercombinator [8] approach to graph reduction is taken here.

Like Jansen’s interpreter, the graph reduction technique used by the Reduc-
eron is similar to what Peyton Jones calls template instantiation [14]. Peyton
Jones introduces template instantiation as a “simple” first step towards a more
sophisticated machine – the G-machine. In this light, the Reduceron might be
seen as being too far from a “real” functional language implementation to pro-
duce meaningful results. But Jansen’s positive results give good reason to be
open-minded about this.

The remainder of this section describes in more detail the stages of compila-
tion to get from Haskell programs to Reduceron bytecode. As a running example
we use the following function for computing the factorial of a given integer:



fact :: Int -> Int

fact n = if n == 1 then 1 else n * fact (n-1)

We end this section by defining the Reduceron bytecode and showing how
fact looks at the bytecode level.

2.1 Desugaring and compilation to supercombinators

The first stage of compilation is to translate the input program to Yhc Core [6]
using the York Haskell Compiler [17]. The result is an equivalent but simplified
program in which expressions contain only function names, function applications,
variables, data constructions, case expressions, let expressions, and literals. All
function definitions are supercombinator definitions. In particular, they do not
contain any lambda abstractions. In our example, fact is already a supercom-
binator, but in Yhc Core its definition becomes:

fact n = case (==) n 1 of

True -> 1

False -> (*) n (fact ((-) n 1))

Here, infix applications have been made prefix, and the if expression has
been desugared to a case.

2.2 Eliminating data constructors and cases

The second stage eliminates all data constructions and case expressions from the
program. First, each data type d of the form

data d = c1 | · · · | cn

is replaced by a set of function definitions, one for each data constructor ci, of
the form

ci v1 · · · v#ci
w1 · · · wn = wi v1 · · · v#ci

where #c denotes the number of arguments taken by the constructor c. In words,
each original data constructor ci is encoded as a function that takes as arguments
the #ci arguments of ci and n continuations stating how to proceed depending
on the constructor’s value.

Next, all default alternatives in case expressions are removed. Case expres-
sions in Yhc Core already have the property that the pattern in each alternative
is at most one constructor deep. So removing case defaults is simply a matter
of enumerating all unmentioned constructors. Now each case expression has the
form

case e of {c1 v1 · · · v#c1
-> e1 ; · · · ; cn v1 · · · v#cn

-> en}

and can be straightforwardly translated to a function application

e (λv1 · · · v#c1
-> e1) · · · (λv1 · · · v#cn

-> en)



Since this transformation reintroduces lambda abstractions, the lambda lifter is
reapplied to make all function definitions supercombinators once again. After
this stage of compilation, our factorial example looks as follows:

fact n = (==) n 1 1 ((*) n (fact ((-) n 1)))

2.3 Dealing with strict primitives

Further to user-defined algebraic data types, the Reduceron also supports, as
primitives, machine integers and associated arithmetic operators. Under lazy
evaluation, primitive functions, such as integer multiplication, need special treat-
ment because their arguments must be fully evaluated before before they can
be applied. Peyton Jones and Jansen both solve this problem by making their
evaluators recursively evaluate each argument to a primitive. This is an elegant
approach when the evaluator is written in a programming language like Miranda
or C, where the presence of an implicit call stack may be assumed. But FPGAs
have no such implicit call stack, so an alternative solution must be found.

Our solution is to treat primitive values in the same way as nullary construc-
tors of an algebraic data type: they become functions that take a continuation
as an argument. The idea is that the continuation states what to do once the
integer has been evaluated, and it takes the fully evaluated integer as its ar-
gument. Transforming the program to obtain this behaviour is straightforward.
Each two-argument primitive function application is rewritten by the rule

p n m → m (n p)

The factorial function is now:

fact n = 1 (n (==)) 1 (fact (1 (n (-))) (n (*)))

2.4 Reduceron bytecode

In the final stage of compilation, programs are turned into Reduceron bytecode.
The bytecode for a program is defined to be a sequence of nodes, and the syntax
of a node is defined in Figure 1. In the syntax definition, the meta-variables i

and p range over integers and primitive function names respectively.
An n-ary application node (Ap i) in Reduceron bytecode is a pointer i to a

sequence of n consecutive nodes in memory whose final node is wrapped in an
End marker. To permit sharing of partial applications, the nodes in an application
sequence are stored in reverse order, e.g. f x y would be stored as y x f . To
illustrate, Figure 2 shows the bytecode of the fact function, as it would appear
relative to some address a in program memory. Each application node in the
bytecode is an offset address, relative to a, the address of the first node of the
function’s bytecode. This first node is always a Start node, and defines the
arity and size (number of words) of the function’s body. The bytecode for a
whole program is simply the concatenation of the bytecodes for each individual
function. Each Fun node is then adjusted to point to the final location of the
function in the program.



node ::= Start i i (first node of a function body: arity and size of function)

| Int i (primitive integer)

| Ap i (application node: a pointer to a sequence of nodes)

| End node (the final node in a node sequence)

| Prim p (primitive function name)

| Fun i (pointer to a function body)

| Var i (variable representing a function argument)

Fig. 1. The syntax of nodes in Reduceron Bytecode.

a +1 +2 +3

Start 1 15 Ap 7 Int 1 Ap 5

+4 +5 +6 +7

End (Int 1) Prim (==) End (Var 0) Ap 12

+8 +9 +10 +11

Ap 10 End (Fun a) Ap 14 End (Int 1)

+12 +13 +14 +15

Prim (*) End (Var 0) Prim (-) End (Var 0)

Fig. 2. The bytecode for fact, as it would appear relative to address a in memory.

3 An operational semantics for the Reduceron

In this section, a semantics for the Reduceron is defined. The are two reasons
for presenting a semantics: first to define precisely how the Reduceron works,
and second to highlight the parts of the reduction process that can be assisted
by special-purpose hardware. The semantics is given as a binary small-step state
transition relation, ⇒, between triples of the form 〈h, s, a〉, where h is the heap,
s is the node stack, and a is the address stack.

In defining the semantics, we model the heap and stacks as lists, and assume
the availability of several common functions on lists. In addition, we write #xs

to denote the length of the list xs and xs[i 7→ x] to denote xs with its ith element
replaced by x.

Initially, the heap contains the bytecode of the program, the node stack
contains the node Fun 0, where 0 is the address of the function main :: Int,
and the address stack contains the address 0. The final result of a program p is
defined to be r where

〈p, [Fun 0], [0]〉 ⇒⋆ 〈 , [Int r], 〉



Notice that the main function is a pure (non-monadic) function with no
arguments. Currently, Reduceron programs take no input. Furthermore, their
output is a single integer – main is of type Int.

3.1 A primitive evaluator

We assume a function P that takes a primitive function name p and two integers,
i and j, and returns a node representing the value of p i j. For example,

P (+) 5 10 = Int 15

and
P (==) 1 1 = Fun true

where true is the address of the function True in the bytecode of the program.

3.2 Semantic definition

The small-step transition relation ⇒ is defined in Figure 3 and the helper func-
tions inst and unwind are defined in Figure 4. There is one transition rule for
each possible type of node that can appear on top of the stack, as described by
the following paragraphs.

Primitives Recall from section 2.3 that primitive applications of the form p a b,
where a and b are unevaluated integers, are transformed to b (a p). Clearly, to
evaluate such an application, b must be evaluated first. This results in the value

of b, of the form Int i, appearing on top of the stack. To deal with such a
situation, the evaluator simply swaps the top two stack elements, resulting in
(a p) b on the stack. Further evaluation yields a p b on top of the stack and then,
after another swap, p a b, where a and b are now fully evaluated, and evaluation
of the primitive application is straightforward.

Once the result of the primitive application has been computed, it must be
written onto the heap, overwriting the the contents of the original application
node b (a p), so that other references to it do not repeat the computation. This is
possible because, as will be explained shortly, a pointer to the original application
is sitting on the address stack.

Applications When an application node of the form Ap i appears on top of the
stack, it is replaced by the End-terminated sequence of nodes starting at address i

on the heap. Furthermore, the addresses of the nodes in the sequence are pushed
on the address stack, to permit updating the sequence after reduction. Following
Peyton Jones’s terminology, we collectively call these two tasks unwinding.

In an implementation of the Reduceron on a standard PC architecture, each
node in an application sequence is read, one at a time, from the heap and written,
one at a time, to the stack. Furthermore, each node address is computed and
written, again one at a time, onto the address stack.



〈h, Int i : x : s, a〉 ⇒ 〈h, x : Int i : s, a〉

〈h, Prim p : Int x : Int y : s, : : r : a〉 ⇒ 〈h[r 7→ End z], z : s, r : a〉

where

z = P p x y

〈h, Ap i : s, : a〉 ⇒ unwind i 〈h, s, a〉

〈h, Fun i : s, a〉 ⇒ unwind #h 〈h′

, s
′

, a
′〉

where

Start arity size = h !! i

body = take size (drop (i + 1) h)

s
′ = drop arity s

r : a
′ = drop arity a

h
′ = h[r 7→ End (Ap #h)]

++ map (inst s #h) body

Fig. 3. Transition rules for the Reduceron

inst s b (Var i) = s !! i

inst s b (Ap i) = Ap (b + i − 1)

inst s b (End n) = End (inst s b n)

inst s b n = n

unwind i 〈h, s, a〉 = 〈h, reverse ap ++ s, reverse as ++ a〉

where

ap = getAp (drop i h)

as = map (i +) [0 . . . #ap − 1]

getAp (End n : ns) = [n]

getAp (n : ns) = n : getAp ns

Fig. 4. Definitions of inst and unwind.



The definition of the unwind function in Figure 4 highlights the first main
opportunities for hardware-assisted graph reduction. First, the uses of getAp

and ++ illustrate that the nodes being copied are contiguous, so the copying can
be achieved by block transfers in a machine with a wider data bus. Second, the
use of map to compute the node addresses indicates that they can be computed
in parallel. And third, there is no dependency between writing to the node and
address stacks, so the two can be done at the same time in a machine with
parallel memories.

Functions When a node of the form Fun i is at the top of the stack, the
bytecode starting at address i + 1 on the heap is

1. copied onto the end of the heap (say at address hp),
2. with each variable Var j substituted with the jth argument on the stack,
3. and with each application node, Ap k, relocated to an absolute address, Ap

(hp + k − 1), on the heap.

Subsequently, n nodes are popped off the node and address stacks, where n is
the arity of the function that has just been instantiated. The address r which
is n places from the top of the address stack represents the root of the redex.
The value at r is overwritten with End (Ap hp), so that the reduction is never
repeated. Finally, the node sequence beginning at the address hp is unwound onto
the stack. We refer to this whole collection of operations as function unfolding.

Just as for unwinding, function unfolding on a standard PC architecture re-
quires execution of many sequential instructions to carry out all the necessary
memory manipulations. And again the semantics shows great scope for paral-
lelism. In particular, the use of ++ to copy a potentially large contiguous block
of nodes onto the end of heap, and the use of map to instantiate each node in-
dependently, opens up the possibility for parallelisation on a machine with wide
memory and vectorised processing logic. Since instantiation of a node requires
access to the stack, a parallel evaluator would need to be able to read the stack
and heap at the same time. Further, because the nodes are being copied from one
portion of memory to another, sequentialisation can be reduced by separating
program memory and application node memory, permitting parallel access.

Notice in the semantics that the Fun rule calls unwind. Immediately after a
combinator body is instantiated on the heap, the spine of that body is unwound
from the heap onto the stack. It is much more efficient to instantiate the spine
of the combinator on the heap and the stack in parallel. This idea is related
to the spineless G-machine [2], which, by keeping track of which nodes are not
shared, can often completely bypass construction of the combinator spine on the
heap. So our idea gives the speed benefit of the spineless G-machine without
introducing any complexity, but not the space benefit.



4 Implementation on FPGA

The semantics presented in the previous section suggests that an efficient im-
plementation of the Reduceron can be obtained if wide, parallel memories and
vectorised processing logic are available. A suitable architecture on which to
explore this possibility is the FPGA. FPGA devices are ideal for constructing
custom processing logic and typically contain large arrays of independent block
RAMs. This section describes our implementation of Reduceron on the FPGA
device available to us, a Xilinx Virtex-II.

To measure of the effect of our proposed optimisations, we implement two
versions of the Reduceron on the Virtex-II: Baseline and Wide. The Wide version
exploits wide, parallel memories and the Baseline version does not.

4.1 Block RAMs

The Virtex-II contains 56 independent 1024 by 18-bit dual-port block RAMs.
Being “dual-port” means that a RAM has two address busses, two data busses
and two write enable signals. Thus two different locations in RAM can be ac-
cessed in a single clock cycle. Furthermore, each port has separate busses for
data input and data output. Thus a value may be written to and read from a
single location on a single RAM port at the same time. The Wide Reduceron
exploits both the dual-port and separate data bus features of block RAMs, and
the Baseline version does not. Both versions of the Reduceron encode bytecode
nodes as 18 bit words, so each RAM location has capacity for a single node.

4.2 Constructing large memories from small ones

The Baseline Reduceron cascades 48 block RAMs to form a single 48k word
memory; 32k is used as heap and stack memory and 16k is used solely by the
garbage collector (described in section 4.5). Block RAMs are cascaded in the
standard way using a multiplexor to combine the outputs of several memories
into a single output. When cascading a large number of block RAMs the multi-
plexor becomes rather large and its delay becomes significant. To overcome this
inefficiency, a register is placed on the output of the multiplexor. This means
that two clock cycles are needed between writing an address to the address-bus
and reading the resulting value off the data-bus. This overhead is alleviated by
pipelining, whereby a new memory access is scheduled while waiting for the pre-
vious one to complete. But keeping the pipeline primed at all times is difficult,
so some overhead is inevitable. Such overhead is present in both versions of
Reduceron, as we always buffer RAM outputs in a register.

4.3 Quad-word memory

To permit wider memory transfers, the Wide Reduceron uses quad-word mem-
ories allowing any four consecutive locations to be read or written in a single
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Fig. 5. Circuit diagram for a quad-word memory.



Memory Capacity (words)
Combinator (program) store 4k
Heap 32k
Node stack 4k
Address stack 4k
Garbage collector scratch-pad 12k

Table 1. The parallel, dual-port, quad-word memories of the Wide Reduceron.

clock cycle. This is not the same as saying that memory locations store 72 bits
rather than 18 – that would imply that only blocks of words beginning at a four
word boundary could be accessed in one cycle. A 72 bit wide memory is easier
to build on the Virtex-II, but a quad-word memory facilitates implementation
of graph reduction since word alignment issues can be ignored. As the method
to implement quad-word memories on FPGA is neither standard nor obvious,
and they cannot be synthesised automatically by existing FPGA design tools, we
give details. Quad-word memories are built out of four separate memories. If each
internal memory is numbered i where i is drawn from [0, 1, 2, 3] then memory i

is used to store locations [i, i + 4, i + 8, . . .] of the quad-word memory. Accessing
four consecutive locations beginning at an address a is then straightforward if
a is a multiple of four, but awkward if it is not. Awkward, but not impossible,
because each of the four consecutive locations, beginning at any address, must

be stored in a different internal memory. The problem is then one of rotating
the quad-word input and output data busses so they line up with those of the
internal memories. See Figure 5. The rotateLeft and rotateRight circuits rotate a
given list of inputs by a given number of positions. The increment circuit takes
an address a and a number n, and produces 4 copies of a, the first n of which
are incremented by 1.

Finally, the Wide Reduceron uses quad-word memories that are also dual-

port, so up to eight words to be accessed together.

4.4 Parallel memories

As well as widening memory, our semantics also suggested that parallel mem-
ories are beneficial, allowing, for example, the stack, heap and combinators to
be accessed at the same time during function unfolding. For this reason, the
Wide Reduceron has five separate memories, each of which is shown in Table 1
alongside its capacity.

4.5 Garbage collection

For any serious computations to be performed in such a small amount of memory,
a garbage collector is essential. Both versions of the Reduceron use a simple
stop-and-copy two-space garbage collector [5]. In this algorithm, active nodes in
the heap are copied onto an empty scratch-pad. The scratch-pad, which then



Operation Clock cycles

Swap 2
Primitive 3
Unwind 2
Unfold 3 + ⌊n

8
⌋

Table 2. Clock cycles taken by each Reduceron instruction.

contains a compacted copy of the heap, is copied back to the heap again before
reduction continues. Although not the cleverest collector, it has the advantage
of being extremely simple. Furthermore, the algorithm is easily defined to be
iterative so no recursive call stack is needed. Our focus is on optimising the
reduction process rather than exploring advanced garbage collectors.

4.6 Clock-level timing breakdown

Table 2 shows the number of clock cycles taken to execute each transition rule
of the Reduceron. The variable n represents the number of nodes in the body of
the supercombinator being unfolded. Each transition rule requires at least two
clock cycles because memory is buffered to shorten the critical path (see section
4.2).

Unwinding an application always takes two clock cycles as applications are
limited to be a maximum of eight nodes long. The compiler hides this limita-
tion by splitting large applications into smaller, nested ones – e.g. f a b c d is
equivalent to (f a b) c d.

Another restriction of the implementation is that functions have a maximum
of eight parameters. This is because only eight elements of the stack can be ac-
cessed simultaneously while instantiating a function body. Again, the limitation
can be hidden by the compiler, though our current implementation does not yet
do so.

4.7 Description language

Both versions of the Reduceron are implemented in Haskell using the Lava li-
brary [3]. Lava allows circuits to be described by normal Haskell functions over
structures of bits (booleans), and can turn such functions into VHDL netlists of
FPGA components that can be synthesised by the Xilinx tool set.

We view the description of the Reduceron circuit as an interesting aspect
of our work. Lava’s functional approach has been found to be suitable, despite
the Reduceron being an irregular, stateful circuit, non-typical of many Lava
applications found in the literature. In particular, we were surprised by how
much of the Reduceron could actually be described by pure (non-monadic) Lava
functions. For example, pure functions are all that are needed to describe the
circuit in Figure 5 and the inst function in Figure 4. To express the stateful
aspects of the circuit we developed a register-transfer monad, similar to the



Baseline Wide Maximum

Number of slices 1530 4874 10752
Number of block RAMs 48 56 56
Clock frequency 94.7 MHz 91.5 MHz (see text)

Table 3. Reduceron synthesis results on the Virtex-II (XC2V2000-6BF957).

Recipe monad we define in [11]. Having pure functions as the default description
method is quite appealing: pure functions are typically easy to test and verify;
they result in concise, highly parameterised descriptions; and they naturally
express circuit parallelism. Only when one needs to express intricate control
flow and timing is monadic (sequential) code required.

Unfortunately, although the Reduceron descriptions are quite short, space
does not permit presenting them in this paper.

4.8 Resource usage

The results of synthesising each version of the Reduceron for the Virtex-II
(XC2V2000-6BF957) using Xilinx ISE 9.1 are shown in Table 3. Concerning clock
frequency: a small, carefully optimised 8-bit processor designed by Xilinx (the
PicoBlaze) can be clocked at 173.6 MHz on the same device. For the Reduceron
to be clocking within a factor of two is acceptable, but suggests room for im-
provement. One problem with our tool flow is that there is no traceability from
code written in Lava to the generated netlist, so it is hard to identify the critical
path in the Lava program.

5 Performance

In this section, the impact of the wide memory optimisations is measured by
comparing the Baseline and Wide Reducerons running a range of Haskell pro-
grams. In addition, the potential for special-purpose graph reduction machines
is explored by running the same programs using several Haskell implementations
on a Pentium-4 2.8GHz PC. The PC Haskell implementations are: Hugs (version
May 2006), GHCi (version 6.6), Yhc (latest), Nhc98 (version 1.20), a C imple-
mentation of the Reduceron, and the GHC native code compiler (version 6.6)
with and without optimisations.

5.1 Programs

Due to the restrictions on the Reduceron, the Haskell programs used in our
experiments must: (1) have a maximum heap residency and stack size less than
32k words and 4k words respectively; (2) not take any external input; and (3)
produce a single integer as a result. The programs used are:



OrdList Perm MSS Queens Adjoxo SumPuz Sem

Hugs 3.68s 2.70s 3.85s 6.50s 14.81s 4.11s 5.49s
Baseline Red. 13.19s 4.15s 7.41s 7.65s 15.92s 8.98s 15.87s
GHCi 4.26s 2.42s 3.24s 6.35s 7.09s 3.39s 5.36s
Yhc 3.59s 1.76s 1.22s 3.06s 3.85s 2.51s 3.81s
PC Red. 3.65s 1.16s 1.96s 2.33s 5.00s 2.77s 4.50s
Nhc98 3.60s 1.46s 1.38s 2.32s 3.12s 2.28s 3.21s
Wide Red. 1.88s 0.58s 2.01s 1.57s 2.70s 1.67s 2.04s
GHC 0.71s 0.28s 0.38s 0.66s 0.86s 0.47s 0.41s
GHC -O2 0.57s 0.19s 0.28s 0.09s 0.30s 0.27s 0.34s

Table 4. Timings of a range programs running on various Haskell implementations.

OrdList Perm MSS Queens Adjoxo SumPuz Sem

Unwind 31.4% 33.0% 41.7% 32.1% 37.7% 36.8% 28.9%
Unfold 64.0% 54.7% 24.1% 27.8% 37.8% 37.2% 55.8%
Swap 0.0% 4.7% 5.1% 10.8% 7.8% 6.0% 5.8%
Prim. 0.0% 3.5% 7.6% 12.2% 6.8% 5.2% 4.6%
GC 4.6% 4.1% 21.5% 17.0% 9.9% 14.8% 4.9%

Table 5. Profiles of programs running on the Wide Reduceron.

1. OrdList. A program to check the property that insertion into a list preserves
ordering for all boolean lists of depth n, applied to n = 11.

2. Perm. A program to find the smallest number in a list of numbers using a
permutation sort, applied to the list containing the numbers 9 down to 1.

3. MSS. A program to compute the maximum segment sum of a list of integers
applied to the list [-150..150].

4. Queens. A function to compute the number of queens that can be placed on
an n-by-n chess board such that no queen attacks any other queen, applied
to n = 10.

5. Adjoxo. An adjudicator for noughts and crosses that determines if one side
can force victory given a partially complete board. The adjudicator is applied
to the empty board.

6. SumPuz. A solver for general cryptarithmetic problems. It is applied to a
range of problems and outputs the total number of solutions to all of them.
(Integer division is not supported on the Reduceron so is implemented by
repeated subtraction.)

7. Sem. A structural operational semantics of the While language [12] applied
to a program that naively computes the number of divisors of 1000. (Divisor
testing is implemented by repeated subtraction.)

5.2 Observations

See tables 4 and 5 for run times and instruction profiles. On average, the Wide
Reduceron outperforms the Baseline Reduceron by a factor of six. On heavily



arithmetic programs (Queens and MSS) the factor is between three and five,
whereas on heavily applicative programs (OrdList and Sem) it is between seven
and eight. Unfolding benefits most from wider memory. The average factor of six
improvement is significant, but we might have hoped for more considering that
eight consecutive locations can be accessed together on each of the five parallel
memories. Some suggestions to utilise the parallel memory more fully are given
in section 5.4.

On average, the Wide Reduceron (on FPGA) outperforms the Reduceron,
Yhc, and Nhc98 bytecode interpreters (on PC). All of these implementations
share a common frontend, so each interpreter runs the same core Haskell pro-
grams. One of the potential advantages of a bytecode interpreter is that the
bytecode can be made sufficiently abstract to have a concise formal semantics,
offering hope for a mechanically verified Haskell implementation. However, there
is a tension between defining a simple, high-level bytecode and one that is simi-
lar enough to the target machine so as to be efficient. The Reduceron approach
appears to relax this tension; a simple bytecode can be designed without con-
cern for the target machine, and then a machine can be designed to efficiently
execute this bytecode. Interestingly, the PC version of the Reduceron performs
surprisingly well in comparison to Yhc and Nhc98, considering that it is based
on template instantiation and that Yhc and Nhc98 are G-machine variants. This
reinforces the findings of Jansen [9].

The leading native-code compiler GHC performs many advanced optimisa-
tions. For example, GHC spots that the critical safe function in Queens is strict,
so need not be instantiated on the heap. Similar optimisations might be used in a
future Reduceron implementation, but architectural changes would be required,
e.g. moving from a template instantiation evaluator to an instruction sequence
approach. Excluding Queens and Adjoxo, which both involve significant integer
operations in a critical loop, and which GHC’s optimisations speed up by over
a factor of two, the Reduceron (on FPGA) runs, on average, 4.85 times slower
than GHC -O2 (on PC).

5.3 Increasing memory capacity and clock frequency

One of the main limitations of the Reduceron is that it only has 32k words of heap
space. This is enough to make an interesting experiment, but too small for any
serious application. However, the limitation might be overcome with improved
hardware, without affecting the existing design significantly. For example, the
Computer Architecture group at York have built the PRESENCE-3 FPGA board
[13] containing a Virtex-5 FPGA and five large, fast RAMs. Since these RAMs
are all accessible in parallel, a wide heap could be obtained using off-chip storage.
Further, the Virtex-5 would offer many more block RAMs, permitting larger
stack and combinator memories on-chip and therefore to be accessed in parallel
as in the existing design.

Another benefit of the Virtex-5 over the Virtex-II is higher performance.
The Xilinx synthesis tool states that our current Reduceron design will run at



160 MHz on the Virtex-5. Identifying and reducing the critical path would yield
further improvements.

5.4 Possible design improvements

Currently, the compiler does not attempt to modify the program to take ad-
vantage of the Wide Reduceron’s features. In particular, lambda lifting after
encoding data types as functions usually introduces a new function definition
for each case alternative, breaking function bodies into smaller pieces. While
this is desirable for the PC and Baseline Reducerons, larger function bodies
should play to the strengths of the Wide Reduceron, and might justify direct
support for case expressions and lambda abstractions.

Another limiting factor for memory utilisation is that application nodes are
typically only one to five words in size. In particular, the indirections used to
achieve sharing are only one node wide. Possible solutions include building com-
binator spines directly on top of redex roots, and the use of one-level deep trees
instead of flat sequences for representing applications.

Eventually, multiple Reducerons could be put on a single FPGA to perform
parallel evaluation [7]. The hope is that the flexibility of the FPGA would allow
for a simple yet effective means of parallel reduction. Another avenue of explo-
ration would be to develop a variant of the ByteString library [4] which exploits
wide memories and vectorised processing logic on the FPGA.

6 Related work

In the FPCA series of international conferences held between 1981 and 1995,
several papers presented designs of exotic new machines to execute functional
programs efficiently. Some special-purpose, sequential graph reduction machines
were indeed built, including SKIM [16] and NORMA [15]. Unfortunately, at the
time, building such machines was a slow and expensive process, and any perfor-
mance benefit obtained was nullified by the next advancement in stock hardware.
Nowadays, the situation is different: FPGA technology has significantly reduced
the time and expense required to build custom hardware, and is a widespread,
advancing technology in its own right. Furthermore, it appears that users of
stock hardware can no longer expect automatic advances in sequential comput-
ing speed. Another difference compared with the Reduceron is that both SKIM
and NORMA were based on Turner’s combinators and did not attempt to use
wide, parallel memories to increase performance.

A piece of work similar in spirit to the Reduceron is Augustsson’s Big Word
Machine (BWM) [1], although the two have been independently. The BWM is a
graph reduction machine with a wide word size, specifically four pointers long,
allowing wide applications to be quickly built on, and fetched from, the heap.
Like the Reduceron, the BWM has a crossbar switch attached to the stack al-
lowing complex rearrangements to be done in a single clock cycle. The BWM
also encodes constructors and case expressions using functions and applications



respectively. Unlike the Reduceron, the BWM works on an explicit, sequential
instruction stream rather than by template instantiation, and it avoids updat-
ing the heap in some cases where a computation cannot be shared, thus saving
unnecessary heap accesses. Features of the Reduceron not present in the BWM
include (1) separate code and heap memories; (2) machine integer support; (3)
less memory wastage as data need not be aligned on four-pointer boundaries;
and (4) support for building multiple different function applications on the heap
simultaneously. The BWM was never actually built. Some simulations were per-
formed but Augustsson writes “the absolute performance of the machine is hard
to determine at this point” [1].

7 Conclusion

In the introduction we argued that the von Neumann bottleneck impedes the
performance of graph reduction on standard computers, and suggested that the
problem could be overcome by building a special-purpose machine with wide,
parallel memory units. We have explored this very possibility by building a
prototype of such a machine – the Reduceron – using an FPGA. The combination
of wide, parallel memory units and vectorised processing logic on the Reduceron
gives a factor of six speed-up on average across a range of benchmark programs.
Furthermore, running at 91.5MHz on a Xilinx Virtex-II FPGA, the Reduceron
performs better than interpreted bytecode and often within a small factor of
optimised native-code running on a 2.8GHz Pentium-4 PC. Considering the large
performance advantage of conventional hard processors over soft, FPGA-based
ones for executing C programs [10], and the simplicity of the Reduceron, it would
certainly be an interesting result if, after further work on the Reduceron, Haskell
programs were found to run at comparable speeds on both.

FPGAs have, to a large extent, eliminated the effort and expertise needed to
build custom hardware. They may be viewed as an advancing technology that
continues to offer higher performance, perhaps one day approaching the clock
rates of modern PCs. Or, alternatively, as a tool for rapidly prototyping de-
signs before they are manufactured as efficient, non-programmable ASICs. Both
views, along with the results obtained in this paper, motivate further experi-
ments in the design of special-purpose graph reduction machines using FPGAs.
The hope is that researchers can find simple and elegant yet fast and parallel

reduction methods by side-stepping the constraints and intricacies of standard,
von Neumann, computers.
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