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Abstract

The leading implementations of graph reduction all target conven-
tional processors designed for low-level imperative execution. In
this paper, we present a processor specially designed to perform
graph-reduction. Our processor — the Reduceron — is implemented
using off-the-shelf reconfigurable hardware. We highlight the low-
level parallelism present in sequential graph reduction, and show
how parallel memories and dynamic analyses are used in the Re-
duceron to achieve an average reduction rate of 0.55 function ap-
plications per clock-cycle.

Categories and Subject Descriptors C.1.3 [Processor Architec-
tures]: Other Architecture Styles—High-level language architec-
tures; D.3.4 [Programming Languages]: Processors—Run-time
environments; 1.1.3 [Symbolic and Algebraic Manipulation]: Lan-
guages and Systems—Special-Purpose Hardware

General Terms Design, Experimentation, Performance

Keywords Graph Reduction, Reconfigurable Hardware

1. Introduction

Efficient evaluation of high-level functional programs on conven-
tional computers is a big challenge. Sophisticated techniques are
needed to exploit architectural features designed for low-level im-
perative execution. Furthermore, conventional computers have lim-
itations when it comes to running functional programs. For exam-
ple, memory bandwidth is limited to serial communication in small
units. Evaluators based on graph reduction perform intensive con-
struction and deconstruction of expressions in memory. Each such
operation requires sequential execution of many machine instruc-
tions, not because of any inherent data dependencies, but because
of architectural constraints in conventional computers.

All this motivates the idea of computers specially designed to
meet the needs of high-level functional languages - much as GPUs
are designed to meet needs in graphics. This is not a new idea.
In the *80s and *90s there was a 15-year ACM conference series
Functional Programming Languages and Computer Architecture.
In separate initiatives, there was an entire workshop concerned
with graph-reduction machines alone [Fasel and Keller 1987], and
a major computer manufacturer built a graph-reduction prototype
[Scheevel 1986]. But the process of constructing exotic new hard-
ware was slow and uncertain. With major advances in compilation
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for ever bigger, faster and cheaper mass-market machines, the idea
of specialised hardware for functional languages went out of fash-
ion.

Reconfigurable Hardware Today, the situation is quite different.
Field-programmable gate arrays (FPGAs) have greatly reduced the
effort and expertise needed to develop special-purpose hardware.
They contain thousands of parallel logic blocks that can be config-
ured at will by software tools. They are widely-available and are
an advancing technology that continues to offer improved perfor-
mance and capacity.

The downside of FPGA applications is that they typically have
much lower maximum clocking frequencies than corresponding
directly-fabricated circuits — this is the price to pay for reconfigura-
bility. To obtain good performance using an FPGA, it is therefore
necessary to exploit significant parallelism.

The Reduceron In this paper, we present a special-purpose ma-
chine for sequential graph reduction — the Reduceron — imple-
mented on an FPGA. We build upon our previous work on the same
topic [Naylor and Runciman 2007] by presenting a new design that
exhibits a factor of five performance improvement.

A notable feature of our new design is that each of its six
semantic reduction rules is performed in a a single-clock cycle. All
the necessary memory transactions required to perform a reduction
are done in parallel. The Reduceron performs on average 0.55
hand-reductions per clock-cycle. A hand-reduction is a reduction
that programmer would perform in by-hand evaluation trace of a
program; it includes function application and case analysis, but not
machine-level reductions such as updating and unwinding.

Another notable development in our new design is the use of
two dynamic analyses enabling update avoidance and speculative
evaluation of primitive redexes, both of which lead to significant
performance improvements. On conventional computers, the run-
time overhead of these dynamic analyses would be prohibitive, but
on FPGA they are cheap and simple to implement.

Contributions In summary, we give:

§2 a precise description of the Reduceron compiler, including re-
finements to the Scott encoding of constructors, used for com-
piling case expressions, addressing various efficiency concerns;

§3 an operational semantics of the template instantiation machine
underpinning the Reduceron implementation;

84 a detailed description of how each semantic reduction rule is
implemented in a single clock-cycle using an FPGA;

§5 extensions to the semantics to support (1) dynamic sharing anal-
ysis, used to avoid unnecessary heap updates, and (2) dynamic
detection of primitive redexes, enabling speculative reduction
of such expressions during function-body instantiation;

86 a comparative evaluation of the Reduceron implementation
against other functional language implementations.
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Figure 1. Core syntax of F-lite.

2. Compilation

This section defines a series of refinements that take programs
written in a lazy functional language called F-lite to a form known
as template code which the Reduceron can execute.

2.1 Source Language

F-lite is a core lazy functional language, close to subsets of both
Haskell and Clean. The syntax of F-lite is presented in Figure 1.

Case Expressions Case expressions are in a simplified form that
can be produced by a pattern match compiler such as that defined in
[Peyton Jones 1987]. Patterns in case alternatives are constructors
applied to zero or more variables. All case expressions contain an
alternative for every constructor of the case subject’s type.

Primitives The meta-variable p denotes a primitive function sym-
bol. All applications of primitive functions are fully saturated. The
Reduceron implements only a small set of primitive operations, not
the full set of a conventional processor — e.g. we have no floating-
point operations. Primitives used in this paper include: (+), (=)
and (<=).

Main Every program contains a definition main = e where e
is an expression that evaluates to an integer n; the result of the
program is the value n.

Case Tables Notice the unusual case-table construct < f>. Case
tables are introduced during compilation — see §2.4.

Examples Here are two example function definitions. The first
concatenates two lists and the second computes triangular numbers.

append xs ys = case xs of
{ Nil -> ys ; Cons x xs -> Cons x (append xs ys) }

tri n = case (<=) n 1 of
{ False -> (+) (tri ((-) n 1)) n ; True > 1 }

2.2 Terminology

Application Length The length of an application e; - - - e, is n.
For example, the length of the application append xs ys is three.

Compound and Atomic Expressions Applications, case expres-
sions and let expressions are compound expressions. All other ex-
pressions are atomic.

Flat Expression A flat expression is an atomic expression or an
application e - - - e, in which each e; for i in 1---n is an atomic
expression. For example, append xs ys is a flat expression, but
tri ((-) n 1) isnot.

Expression Graph A let expression

let {z1=e1; - ;xn=e€e, } in e

is an expression graph exactly if e is a flat expression and each e;
foriin 1---nis a flat expression. Expression graphs are restricted
A-normal forms [Flanagan et al. 1993].

Constructor Index and Arity Each constructor C' of a data type
with m constructors is associated with a unique index in the range
1---m. More precisely, the index of a constructor is its position in
the alphabetically sorted list of all constructors of that data type.
For example, the standard list data type has two constructors: Cons
has index 1 and Nil has index 2. A constructor with index 7 is
denoted Cj;, and the arity of a constructor C'is denoted #C'.

2.3 Primitive Applications

In a lazy language, an application of a primitive function such as
(+), (=) or (<=) requires special treatment: the integer arguments
must be fully evaluated before the application can be reduced. One
simple approach is to transform binary primitive applications by
the rule

peger — e1(eop) (D
with the run-time reduction rule
ne — en 2)

for any fully evaluated integer literal n. To illustrate this approach,
consider the expression (+) (tri 1) (tri 2). By compile-
time application of rule (1), the expression is transformed to
tri 2 ((tri 1) (+)). Atrun-time, reduction is as follows.

tri 2 ((tri 1) (+)) { tri 2 evaluatesto 3 }

3 ((tri 1) () { Rule (2) }
= (tri 1) (+) 3 { tri 1 evaluatesto 1 }
= 1 3 { Rule (2) }

(+) 13

After transformation by rule (1), tri looks as follows.

tri n = case 1 (n (<=)) of
{ False > n (tri (1 (n (-))) (+)) ; True -> 1 }

In §5, we present more efficient techniques for dealing with primi-
tive applications.

2.4 Case Expressions

This section describes how case expressions are compiled. First
we recall the Scott encoding recently rediscovered by Jansen
[Jansen et al. 2007]. Then we make a number of refinements to
this encoding.

The Scott/Jansen Encoding The first step of the encoding is to
generate, for each constructor C;; of a data type with m construc-
tors, a function definition

Cixi-apo, ki km = kix1--- Ty,
The idea is that each data constructor C; is encoded as a function
that takes as arguments the #C’; arguments of the constructor and
m continuations.The function encoding constructor C; passes the
constructor arguments to the i continuation. For example, the list
constructors are transformed to the following functions.

Cons x XS cn =cC X XS
Nil cn=n

Now case expressions of the form

caseeof {C1Z1->e1 ;3 Com T => €m



are transformed to
e (alty 171 51) cee (allm ’Um fm)

where ; are the free variables occurring in the i case alternative
and each alt; forzin 1-- - m has the definition

alt; 171 l_"z = e;
For example, the append function is transformed to

append xs ys = xs (consCase ys) (nilCase ys)
consCase ys x xs = Cons x (append xs ys)
nilCase ys =ys

Notice that the application of nilCase could be reduced at compile
time. This is a consequence of constructor Nil having arity 0.

Larger Example Now let us look at a slightly larger example: an
evaluator for basic arithmetic expressions.

eval x y e = case e of {
Add nm -> (+) (eval x y n) (eval x y m);
Neg n -> (=) 0 (eval x y n);
Sub nm -> (=) (eval x y n) (eval x y m);
X -> x;
Y ->y;

}

After transformation, and in-lining the nullary cases, we have:

eval x ye =e (add x y) (neg x y) (subx y) xy
add x ynm-= (+) (eval x y n) (eval x y m)
neg xyn = (=) 0 (eval x y n)

sub x ynm= (-) (eval x y n) (eval x y m)

Look at the large body of eval: it contains three nested function
applications and several repeated references to x and y. In typi-
cal functional language implementations, large function bodies are
more expensive to construct than small ones.

Refinement 1 Rather than partially apply each case-alternative
function to the free variables it refers to, we can define every
alternative function alike to take all free variables occurring in any
alternative. A case alternative can simply ignore variables that it
does not need. So, let us instead transform case expressions to

ealty -+ alty,, U

where ¥ is the union of the free variables in each case alternative,
and each alt; for 7 in 1 - - - m has the definition

alt; T; U = e;
Each case-alternative function now takes the constructor arguments

followed by the free variables, rather than the other way around. To
illustrate, append now looks as follows.

append xs ys = xs consCase nilCase ys
consCase x xs ys = Cons x (append xs ys)
nilCase ys = ys

And eval becomes

eval x y e = e add neg sub xCase yCase x y
add nmxy= (+) (eval x y n) (eval x y m)
neg n xy=()0 (eval x y n)

sub nmxy=(-) (eval x y n) (eval x y m)
xCase Xy =X

yCase Xy =y

The new bodies of append and eval contain no nested function
applications and no repeated references. An apparent disadvantage
is that we have had to introduce functions for the 0-arity construc-
tor cases nilCase, xCase, and yCase. But our next refinement
prepares the way to recover the cost of applying these functions.

Refinement 2 We now have a large row of contiguous constants
in the body of eval. To allow these constants to be represented ef-
ficiently (see §2.7) we place them in a case table. Case expressions
are transformed to

e<alty, -+, alty,> T

and each constructor C; is encoded as

Cixl---m#cit = (t'Z) X1 THC,

k3

where ¢!i returns the i element of case table .

Refinement 3 An evaluator can handle constructors more effi-
ciently than general function definitions. We could introduce the
following reduction rule for constructors.

C’iel---e#cit — (t'Z) €1 exc;

This rule replaces a constructor with a case-alternative function by
looking up the case table using the constructor’s index. However,
the rule also drops the ¢ argument. As a result, an implementation
would have to slide the constructor arguments down the stack. A
reduction rule that does not require argument sliding is

Cier-repc,t — (t1i) e1 - exc;t 3)

To account for the fact that ¢ has not been dropped, the case-
alternative functions take the form:

alt; Zfz to = €;
The final version of append is

append xs ys = xs <consCase, nilCase> ys
consCase x xs t ys = Cons x (append xs ys)
nilCase t ys =ys

The t argument is simply ignored by the case alternatives. The final
version of tri is

tri n = 1 (n (<=)) <falseCase, trueCase> n
falseCase t n =n (tri (1 (n (-))) (+))
trueCase tn=1

In §3.3 and §4.5 we will see how these refinements enable efficient
choices to be made at the implementation level.

2.5 In-lining

Our definition of append is no longer directly recursive. This is a
consequence of splitting the case alternatives off as new function
definitions. However, direct recursion is easily recovered: simply
in-line the definition of append in the body of consCase.

consCase x xs t ys =
Cons x (xs <consCase, nilCase> ys)

This transformation motivates the following general in-lining rule:
in-line saturated applications of functions that have flat bodies. In-
lining a flat expression e is often a big win because it eliminates a
reduction and e is often no larger than the application it replaces.

2.6 Expression Graphs

It is convenient for implementation purposes to make the graph
structure of function bodies explicit by transforming them to ex-
pression graphs (§2.2). This is achieved by three rewrite rules. (1)

Lift nested applications into let bindings
e1--- () -en — let{xz=e¢}ine -z - e,

where e; is an application or a let expression, and x is a fresh
variable. (2) Lift let expressions out of let bodies.

let {50} in (let {b,} in e) — let {5’0;51} in e



> data Atom =

> FUN Arity Int -- Function with arity and address

> | ARG Int -- Reference to a function argument
> | PTIR Int -- Pointer to an application

> | CON Arity Int -- Constructor with arity and index
> | INT Int -- Integer literal

> | PRI String -- Primitive function name

> | TAB Int -- Case table

Figure 2. Syntax of atoms in template code.

(3) Lift let expressions out of let bindings.

let { ~~~;x=1et{g} in ey ;- -} in ey —
let {---;b;x=¢e9;---} in e

These rules assume no variable shadowing. To illustrate, the defini-
tion of falseCase becomes:

falseCase t n =
let {x0 = tri x1 (#); x1 =1 x2; x2 =n (-)} in n x0

It is easy to see the number and length of applications in an expres-
sion graph. For example, falseCase contains four applications
and its longest application, tri x1 (+), has length three.

2.7 Template Code

We are now very close to the template code that can be executed
by the Reduceron. We shall define template code as a Haskell data
type, paving the way for an executable semantics to be defined in
the next section. To highlight the semantics, each semantic defini-
tion is prefixed with a >’ symbol.

In template code, a program is defined to be a list of templates.

> type Prog = [Templatel

A template represents a function definition. It contains an arity, a
spine application and a list of nested applications.

> type Template = (Arity, App, [Appl)
> type Arity = Int

The spine application holds the let-body of a definition’s expres-
sion graph and the nested applications hold the let-bindings. Appli-
cations are flat and are represented as a list of atoms.

> type App = [Atom]

An atom is a small, tagged piece of non-recursive data, defined
in Figure 2. The following paragraphs define how programs are
translated to template code.
Functions Given a list of function definitions

an_:b:eO» '7fnfn=en

each function identifier f; occurring in eg - - - €, is translated to an
atom FUN #f ¢ where #f is the arity of function f.

Arguments In each definition f xo---x, = e, each variable z;

occurring in e is translated to an atom ARG 4.

Let-Bound Variables 1In each expression graph
let{zo=e€e0; - ;Tn=€p} ine

each z; occurring in e, eq - - - ey, is translated to an atom PTR 4.

Integers, Primitives, and Constructors An integer literal n, a
primitive p, and a constructor C; are translated to atoms INT n,
PRI p, and CON #C; i respectively.

Case Tables Given a list of function definitions

foZo =eo, -+, fuln = en

each case table <f;, --- f;> occurring in eg - - - ey, is translated to
an atom TAB ¢. We assume that the functions in each case table are
defined contiguously in the program.

Example The template code for the program

main = tri 5
tri n = let x = n (=) in 1 x <falseCase, trueCase> n
falseCase t n =

let {x0 = tri x1 (+); x1 =1x2; x2=n (-)} in n x0
trueCase t n =1

is as follows.

> trib :: Prog
> trib = [ (0, [FUN 1 1, INT 5], [1)

> , (1, [INT 1, PTR O, TAB 2, ARG 0],
> [[ARG O, PRI "(<=)"11)

> , (2, [ARG 1, PTR 0],

> [[FUN 1 1, PTR 1, PRI "(+)"],
> [INT 1, PTR 2],

> [ARG 1, PRI "(-)"11)

> , (2, [INT 11, [D) ]

3. Operational Semantics

This section defines a small-step operational semantics for the Re-
duceron. There are two main reasons for presenting a semantics:
(1) to define precisely how the Reduceron works; and (2) to high-
light the low-level parallelism present in graph reduction that is ex-
ploited by the Reduceron. We have found it very useful to encode
the semantics directly in Haskell. Before we commit to a low-level
implementation, we can assess the complexity and performance of
different design decisions and optimisations.

At the heart of the semantic definition is the small-step state

transition function
> step :: State -> State

where the state is a 4-tuple comprising a program, a heap, a reduc-
tion stack, and an update stack.
> type State = (Prog, Heap, Stack, UStack)

The heap is modelled as a list of applications, and can be indexed
by a heap-address.

> type Heap = [App]
> type HeapAddr = Int

An element on the heap can be modified using the update function.

> update :: HeapAddr -> App -> Heap -> Heap
> update i a as = take i as ++ [a] ++ drop (i+1) as

The reduction stack is also modelled as a list of nodes, with the top
stack element coming first and the bottom element coming last.

> type Stack = [Atom]
> type StackAddr = Int

There is also an update stack.

> type UStack = [Update]
> type Update = (StackAddr, HeapAddr)

The meaning of a program p is defined by run p where

> run :: Prog -> Int
> run p = eval initialState
> where initialState = (p, [], [FUN 0 0], [1)

> eval (p, h, [INT i], w) = i
> eval s = eval (step s)

The initial state of the evaluator comprises a program, an empty
heap, a singleton stack containing a call to main, and an empty
update stack. The main template has arity O and is assumed to be
the template at address 0. To illustrate, run trib5 yields 15. In the
following sections, the central step function is defined.



3.1 Primitive Reduction

The prim function applies a primitive function to two arguments
supplied as fully-evaluated integers.

> prim :: String -> Atom -> Atom -> Atom
> prim "(+)" (INT n) (INT m) = INT (n+m)
> prim "(-)" (INT n) (INT m) = INT (n-m)
> prim "(<=)" (INT n) (INT m) = bool (n<=m)

The comparison primitive returns a boolean value. Both boolean
constructors have arity 0; False has index 0 and True has index 1.

> bool :: Bool -> Atom
> bool False = CON 0 O
> bool True = CON O 1

3.2 Normal Forms

The number of arguments demanded by an atom on top of the
reduction stack is defined by the arity function.

arity :: Atom -> Arity

>

> arity (FUN n i) = n
> arity (INT i) =1

> arity (CON n i) = n+i
>

arity (PRI p) = 2

To reduce an integer, the evaluator demands one argument as shown
in rewrite rule (2). And to reduce a constructor of arity n, the
evaluator requires n + 1 arguments (the constructor’s arguments
and the case table) as shown in rewrite rule (3).

The arity of an atom is only used to detect when a normal form
is reached. A normal form is an application of length n whose first
atom has arity > n.

Some functions, such as case-alternative functions, are statically
known never to be partially-applied, so they cannot occur as the
first atom of a normal form. Such a function, say with address n,
can be represented by the atom FUN 0 n.

3.3 Step-by-Step Reduction

There is one reduction rule for each possible type of atom that can
appear on top of the reduction stack.

Unwinding 1If the top of the reduction stack is a pointer z to
an application on the heap, evaluation proceeds by unwinding:
copying the application from the heap to the reduction stack where
it can be reduced. We must also ensure that when evaluation of the
application is complete, the location « on the heap can be updated
with the result. So we push onto the update stack the heap address
z and the current size of the reduction stack.

> step (p, h, PTR x:s, u) = (p, h, h!!x ++ s, upd:u)
> where upd = (1+length s, x)

Updating Evaluation of an application is known to be complete
when an argument is demanded whose index is larger than n, the
difference between the current size of the reduction stack and the
stack address of the top update. If this condition is met, then a
normal form of arity n is on top of the reduction stack and must
be written to the heap.

> step (p, h, top:s, (sa,ha):u)

> | arity top > n = (p, h’, top:s, w
> where
>
>

n l1+length s - sa
h’ = update ha (top:take n s) h

Integers and Primitives Integer literals and primitive functions
are reduced as described in §2.3.

> step (p, h, INT n:x:s, u)

= (p, h, x:INT n:s, u)
> step (p, h, PRI f:x:y:s, u) =

(p, h, prim £ x y:s, u)

Constructors Constructors are reduced by indexing a case table,
as described in §2.4.

> step (p, h, CON n j:s, u) = (p, h, FUN 0 (i+j):s,uw)
> where TAB i = s!!n

There is insufficient information available to compute the arity of
the case-alternative function at address i+j. However, an arity of
zero can be used because a case-alternative function is statically
known not to be partially applied (§3.2).

Function Application To apply a function f of arity n, n + 1
elements are popped off the reduction stack, the spine application
of the body of f is instantiated and pushed onto the reduction stack,
and the remaining applications are instantiated and appended to the
heap.

> step (p, h, FUN n f:s, u) = (p, h’, s’, u)
> where

> (pop, spine, apps) =p !! f
> h’> = h ++ map (instApp s h) apps
> s’ = instApp s h spine ++ drop pop s

Instantiating a function body involves replacing the formal param-
eters with arguments from the reduction stack and turning relative
pointers into absolute ones.

> instApp :: Stack -> Heap -> App -> App
> instApp s h = map (inst s (length h))

inst :: Stack -> HeapAddr -> Atom -> Atom
inst s base (PTR p) = PTR (base + p)

inst s base (ARG i) = s !! i

inst s base a = a

vV V. V VvV

4. Implementation

We now refine the semantic definition to an actual implementation
that runs on an FPGA. Specifically, our target is a mid-range Xil-
inx Virtex-5 released in 2008. Our guiding design principle is to
perform as much reduction as possible in each clock-cycle. Our
implementation performs each semantic reduction rule in a single
clock-cycle, and clocks at a modest but respectable frequency for
processor-like FPGA designs.

4.1 Low-Level Parallelism

Below we motivate three main opportunities for parallelism that we
exploit in our implementation.

Parallel Memories The state of the reduction machine comprises
four independent memory regions: the program, the heap, the re-
duction stack and the update stack. Most reduction rules refer to
and modify more than one memory region. For example, the reduc-
tion rule for unwinding writes to both the reduction stack and the
update stack. If the four memory regions are implemented as four
separate memory units then they can be accessed in parallel, avoid-
ing contentions that would arise if they were all stored in a single
memory unit.

Wide Memories Many of the reduction rules involve transferring
applications to and from memory. If a memory only allows one
atom to be accessed at a time, transferring a single application
involves several memory accesses. If memories are wide enough
to allow a whole application to be accessed at a time, transferring
an application needs only a single memory access.

Parallel Instantiation The reduction rule for function application
involves instantiating each application in a function body and ap-
pending it to the heap. Each atom in an application can be instanti-
ated in parallel, as indicated by the use of map in the definition of
instApp. The wide heap then allows the instantiated application
to be written in one memory access. Further, each application in a
function body can also be instantiated in parallel, as indicated by
the use of map in semantic rule for function application. If more
than one application can be appended to the heap at a time, parallel
instantiation of applications is possible.



4.2 Bounded Template Instantiation

Maximum Application Length Ideally, we would have a wide
enough data bus to transfer any entire application in one go. How-
ever, this is an impossibility without some upper bound on the
length of an application. Therefore, we introduce a bound, MaxAp-
pLen, on the number atoms that can occur in an application.

To deal with an application whose length is larger than MaxAp-
pLen, we split it into two or more smaller ones. For example, if
MaxAppLen is 3 the application f a b ¢ d e can be bracketed
((f a b) ¢ d) eresulting in three applications rather than one.

An alternative way to bound application length is to split appli-
cations into chunks that are aligned contiguously in memory, with
the final chunk especially tagged by an end-marker. This approach
[Naylor and Runciman 2007] is more efficient in some cases, but it
cannot be expressed as a core-language transformation.

Maximum Spine Length Spine applications are special because,
during function application, they are written to the stack, not the
heap. So it is fine for spine applications to have a different maxi-
mum length: MaxSpineLen.

Maximum Applications per Template Ideally, all applications in
a template would be instantiated in parallel. To allow for such an
implementation, we introduce a bound, MaxAppsPerBody, on the
maximum number of applications that can occur in a template
body. To deal with templates containing more applications than
MaxAppsPerBody, we employ a technique called template splitting.

Template Splitting We explain template splitting by example.
Consider the following template, representing the falseCase
function occurring in the tri5 program defined in §2.7.

(2, [ARG 1, PTR 0]
, [ [FUN 1 1, PTR 1, PRI "(+)"]
, [INT 1, PTR 2]
, [ARG 1, PRI "(-)"] 1)

-- Spine

—-- Application 1
-- Application 2
-- Application 3

It contains one spine application and three nested applications. If
MaxAppsPerBody is two then this template is split into two sub-
templates. The first sub-template

(0, [FUN 0 4] -- Intermediate spine
, [ [FUN 11, PTR 1, PRI "(+)"] -- Application 1
, [INT 1, PTR 2] 1) -- Application 2

replaces the original template in the tri5 program. The second
sub-template is appended to the program at the next free program
address: address four in the case of the tri5 program.

(2, [ARG 1, PTR (-2)]
, [ [ARG 1, PRI "(=)"] D)

-- Spine
-- Application 3

The spine of the first sub-template is simply a call to the second
sub-template. There are three important points to note:

e The first sub-template contains three applications, which is still
larger than MaxAppsPerBody. However, at the implementation
level, we do not count a spine application of the form [FUN O f]
as an application: it can be interpreted simply as “jump to
template f”, and does not entail any heap or stack accesses.

In the second sub-template, each atom of the form PTR n is
replaced by PTR (n — 2) to account for the fact that instantiation
of the first sub-template will have increased the size of the heap
by two.

The arity of the first sub-template is set to zero: no elements are
popped from the stack since they may be required by the second
sub-template.

Choosing the Bounds We must choose the values of the bounds
MaxAppLen, MaxSpineLen, and MaxAppsPerBody carefully: mak-
ing them too low prevents useful parallelism; making them too

Memory Unit Element Bits/Element  Elements
Program Template 234 1k
Heap App 77 32k
Reduction Stack  Atom 18 8k
Update Stack Update 28 4k
Case-Table Stack  Atom 18 4k
Copy Space App 77 16k

Table 2. Size and type of each parallel memory unit.

high wastes resources. Our choices are informed by experiment.
Table 1 shows the performance effect of varying each parameter
in turn — non-varying parameters are effectively defined as infinity.
The reduction count and heap usage figures are normalised across
the varying parameter and averaged across a range of benchmark
programs (see §6.1). The measurements are obtained using a PC
implementation of the operational semantics. The reduction count
represents the number of times that the step function is applied in
the definition of evall.

The chosen bounds are: MaxAppLen = 4, MaxSpineLen = 6,
and MaxAppsPerBody = 2. The measurements suggest a MaxAp-
pLen of three is preferable to four due to better heap usage; the
choice of four is motivated by another implementation parameter —
the arity limit — introduced in §4.3. A MaxSpineLen of five would
not be much worse than six, but the choice of six does not cost
much extra at the implementation level. A MaxAppsPerBody of two
is motivated by the fact that three would not be much better and that
two fits nicely with the dual-port memories available on the FPGA.

4.3 Memory Layout

Our Xilinx Virtex-5 FPGA contains 296 dual-port block RAMs
each with a capacity of 18 kilobits giving a total on-chip RAM ca-
pacity of 5,328 kilobits. Each block RAM is dual-port allowing two
independent accesses per clock-cycle. The data-bus and address-
bus widths of each block-RAM are configurable. Possible config-
urations include 1k-by-18bit and 16k-by-1bit, and a range of pos-
sibilities in-between. Two 18 kilobit block RAMs can be merged
to give further possible configurations ranging from 1k-by-36bit to
32k-by-1bit.

For simplicity, our implementation uses FPGA block RAMs
only; no off-chip RAMs are used. This represents a tight constraint
on the amount of memory available to the implementation. (The
possibility of introducing off-chip memories is discussed in §7.)

Memory Structure The parallel memory units, each built out of
block RAMs, are listed in Table 2 along with their capacities and
the type of element stored at every addressable location. Note that
there are uniform sizes for every program template and for every
heap application. The two memory units at the bottom of the table
are introduced in §4.5 and §4.6 respectively.

Wide Memories The wide heap memory is implemented by con-
catenating the data-busses of 77 32k-by-1bit block RAMs and
merging their address-busses. This is done on both ports of each
block RAM, making a dual-port heap. Similarly, the wide program
memory is implemented using 13 1k-by-18bit block RAMs, but
this time the dual-port capability is not needed.

Stack Memories We store the top N stack elements in special-
purpose stack registers. In any given clock-cycle, the stack imple-
mentation allows: the top N elements to be observed; and up to
N elements to be popped off; and up to N elements to be pushed
on. If pushing and popping occur the same clock-cycle, the pop is

! Constructor reductions are not counted, anticipating the optimisation pre-
sented in §4.5.



MaxAppLen Reductions Heap MaxSpineLen
2 1.00 1.00 2
3 0.84 1.00 3
4 0.83 1.30 4
5 0.82 1.57 5
6 0.82 1.89 6

Reductions Heap

MaxAppsPerBody  Reductions

1.00 1.00 1 1.00
0.82 0.76 2 0.89
0.76 0.67 3 0.85
0.71 0.60 4 0.85
0.70 0.57

Table 1. Effect of application-length, spine-length, and applications-per-template bounds on reduction count and heap usage.

performed before the push. Simultaneous access to the top IV ele-
ments of the stack is achieved by a crossbar switch. It requires over
2,000 logic gates, but this is less than 1% of our FPGA’s logic-gate
capacity. There is a lot of parallelism in a crossbar, so the invest-
ment is worth it. Further hardware-level implementation details of
the stack implementation are available in [Memo 27].

Arity Limit The stack implementation is parameterised by IV, but
requires [V to be a power of two. For the update stack, IV is defined
to be 1 since reading and writing multiple values is of no benefit.
For the reduction stack, there are three considerations to take into
account, bearing in mind the aim of single-cycle reduction: (1) only
the top IV stack elements are available in any clock-cycle, hence
the maximum number of arguments that be taken by a function
is N — 1; (2) the maximum length of a partially-applied function
application, or normal-form, is therefore N — 1; and (3) the choice
of N should allow a normal form of length N — 1 to be written
onto the heap in a single clock cycle. As two applications of length
M axAppLen can be written to the dual-port heap per clock-cycle,
and MaxAppLen is four, a sensible choice for N is eight since
a normal form of length seven can be bracketed perfectly into two
applications of length four.

To deal with functions taking more than N —1 arguments, an ab-
straction algorithm can be used [Turner 1979]. We have developed
a minor variant [Memo 12] of an abstraction algorithm based on
director strings [Dijkstra 1980, Kennaway and Sleep 1988] which
uses a more coarse-grained combinator set than Turner’s algorithm.

4.4 One Reduction per Clock-Cycle
Heap and program memory units have the following two properties.

e If a memory location x is read in clock-cycle n, the value
at address « becomes available on the memory’s data bus on
clock-cycle n + 1.

e If a value is written to memory location x in clock-cycle n, the
new value at address x is not apparent until clock-cycle n + 1.

The top stack elements are always observable without any clock-
cycle delay. Now we show how each reduction rule in the semantics
can be performed in a single clock-cycle, with reference to the
following two invariants.

Invariant 1: If the top of the reduction stack is of the form
PTR «x then the application at heap address x is currently
available on the heap memory’s data bus.

Invariant 2: If the top of the reduction stack is of the form
FUN n f then the template at program address f is currently
available on the program memory’s data bus.

Unwinding The top of the reduction stack has the form PTR x.
So the application currently on the heap’s data bus, say app, is the
application at heap address « (Invariant 1). The following memory
transactions are performed in parallel in a single clock-cycle:

e the application app is pushed onto the reduction stack;

e an update (n, z) is pushed onto the update stack where n is the
size of the reduction stack before modification; and

e the first atom of app is the new top of the reduction stack and is
used to lookup heap and program memory in order to maintain
Invariants 1 and 2.

Updating The update stack’s data bus is used to determine if
an update is required, and if so, at what heap address x. If an
update is required, then a normal form is available on the reduction
stack’s data bus. The following memory transactions are performed
in parallel in a single clock-cycle:

e if the normal form has length less than or equal to four it is
written to the heap at address «;

e if the normal form has length larger than four, it is bracketed
into two applications of maximum length four one of which
is written to the heap at address «x, and the other of which is
appended to the heap;

e the top element of the update stack is popped; and
e a program lookup is performed to preserve Invariant 2.

A heap lookup to preserve Invariant 1 is not necessary since the top
of the reduction stack cannot possibly be of the form PTR z if an
update is being performed. So updating requires at most two heap
accesses, which can be done parallel thanks to dual-port memory.

Integers, Primitives, and Constructors Each of these reduction
rules involves a pure stack manipulation, and each straightfor-
wardly consumes a single clock-cycle.

Function Application The top of the reduction stack has the form
FUN n f. So the template of f, say ¢, is available on the data bus
(Invariant 2). There are two cases to consider.

Case 1: If t contains a spine application of the form [FUN O f], then:

® up to two nested applications in ¢ are instantiated and appended
to the heap;

e the atom FUN O f is written to the top of the reduction stack;
and

e function f is looked-up in program memory in order to preserve
Invariant 2.

Case 2: If t is of some other form, then:

e zero or one nested applications in t are instantiated and ap-
pended to the heap;

e the spine application in ¢ is instantiated and written to the
reduction stack; and

e the first element of the instantiated spine is used to lookup heap
and program memory to preserve Invariants 1 and 2.

In Case 1, a heap lookup to preserve Invariant 1 is not required: the
top of the stack is known to be a FUN, not a PTR. Thus in each case,
at most two heap access are required.

4.5 The Case-Table Stack

Constructor reduction modifies only the top element of the reduc-
tion stack by adding the index of the constructor to the address of a
case table. This addition is almost cheap enough to be implemented



in combinatorial logic (i.e. in zero clock-cycles) without affecting
the critical path delay of the circuit. The problem is that the case
table must be fetched from a variable position on the stack. This
requires a multiplexer, making the combinatorial logic more ex-
pensive.

To solve this problem, we introduce a new stack memory to
store case tables. When unwinding an application containing a case
table, the case table is pushed onto the case-table stack. When per-
forming constructor reduction, the case table of interest is always
in the same position: the top of the case-table stack.

Table 3 shows the impact of various optimisations on clock-
cycle count and heap usage across a range of benchmark programs.
The in-lining strategy defined in §2.5 and the case-table optimisa-
tion both result in significant performance gains on average. The
other optimisations in Table 3 are introduced in §5.

4.6 Garbage Collection

Our implementation employs a simple two-space stop-and-copy
garbage collector [Jones and Lins 1996]. Although a two-space
collector may not make the best use of limited memory resources,
it does have the attraction of being easy to implement. In particular,
the algorithm is easily defined iteratively so that no recursive call
stack is needed.

4.7 Hardware Description

The Reduceron is described entirely in around 2,000 lines of York
Lava [Naylor et al. 2009], a hardware description language embed-
ded in Haskell. A large proportion of the description deals with
garbage collection and the bit-level encoding of template code; the
actual reduction rules account for less than 400 lines.

The Reduceron description is quite different to other reported
Lava applications. It combines structural and behavioural descrip-
tion styles. Behavioural description brings improved modularity to
our description. We associate each reduction rule with the memory
transactions it performs, rather than associating each memory unit
with all the memory transactions performed on it. So each reduc-
tion rule can be expressed in isolation.

The behavioural description language, called Recipe and in-
cluded with York Lava, takes the form of a 300 line Lava library.
It provides mutable variables, assignment statements, sequential
and parallel composition, conditional and looping constructs, and
shared procedure calls. In addition, it uses the results of a simple
timing analysis, implemented by abstract interpretation, to enable
optimisations.

4.8 Synthesis Results

Synthesising our implementation on a Xilinx Virtex-5 LX110T
(speed-grade 1) yields an FPGA design using 14% of available
logic slices and 90% of available block RAMs. The maximum
clock frequency after place-and-route is 96MHz. By comparison,
Xilinx distributes a hand-optimised RISC soft-processor called the
MicroBlaze that clocks at 210MHz on the same FPGA. However,
as the Reduceron performs a lot of computation per clock-cycle,
96MHz seems respectable. Furthermore, the MicroBlaze supports
up to five pipeline stages, whereas the Reduceron is not pipelined.

5. Optimisations

This section presents several optimisations, defined by a series of
progressive modifications to the semantics defined in §3. A theme
of this section is the use of cheap dynamic analyses to improve
performance.

5.1 Update Avoidance

Recall that when evaluation of an application on the heap is com-
plete, the heap is updated with the result to prevent repeated evalu-

ation. There are two cases in which such an update is unnecessary:
(1) the application is already evaluated, and (2) the application is
not shared so its result will never be needed again.

We identify non-shared applications at run-time, by dynamic
analysis. Argument and pointer atoms are extended to contain an
extra boolean field.

> data Atom = --- | ARG Bool Int | PTR Bool Int | ---

An argument is tagged with True exactly if it is referenced more
than once in the body of a function. A pointer is tagged with False
exactly if it is a unique pointer; that is, it points to an application
that is not pointed to directly by any other atom on the heap or
reduction stack. There may be multiple pointers to an application
containing a unique pointer, so the fact that a pointer is unique
is, on its own, not enough to infer that it points to a non-shared
application. To identify non-shared applications, we maintain the
invariant:

Invariant 3: A unique pointer occurring on the reduction
stack points to a non-shared application.

A pointer that is not unique is referred to as possibly-shared.

Unwinding The reduction rule for unwinding becomes

> step (p, h, PTR sh x:s, u) = (p, h, app++s, upd++u)
>  where

> app = map (dashIf sh) (h!!x)

> upd = [(1+length s, x) | sh && red (h!!x)]

If the pointer on top of the stack is possibly-shared, then the ap-
plication is dashed before being copied onto the stack by mark-
ing each atom it contains as possibly-shared. This has the effect of
propagating sharing information through an application.

> dashIf sh a = if sh then dash a else a

> dash (PTR sh s) = PTR True s
> dash a = a

If the pointer on top of the stack is unique, the application it points
to must be non-shared according to Invariant 3. An update is only
pushed onto the update stack if the pointer is possibly-shared and
the application is reducible. An application is reducible if it is
saturated or its first atom is a pointer.

> red :: App -> Bool
> red (PTR sh i:xs) = True
> red (x:xs) = arity x <= length xs

Updating When an update occurs, the normal-form on the stack
is written to the heap. The normal-form may contain a unique
pointer, but the process of writing it to the heap will duplicate it.
Hence the normal-form on the stack is dashed.

> step (p, h, top:s, (sa,ha):u)

> | arity top > n = (p, h’, top:dashN n s, u)
> where
>
>

n
h’

l+length s - sa
update ha (top:take n s) h

> dashN n s = map dash (take n s) ++ drop n s

It is unnecessary to dash the normal-form that is written to the heap,
but there is no harm in doing so: the application being updated is
possibly-shared, and a possibly-shared application will anyway be
dashed when it is unwound onto the stack.

Function Application 'When instantiating a function body, shared
arguments must be dashed as they are fetched from the stack.

> inst s base (PTR sh p) = PTR sh (base + p)
> inst s base (ARG sh i) = dashIf sh (s!!i)
> inst s base a = a



Program Baseline +In-lining +Case Stack  +Update Avoid.  +Infix Prims. +PRS
Time Heap Time Heap Time Heap Time Heap Time Heap Time Heap
Adjoxo 1.00 1.00  0.85 0.80  0.71 0.80  0.54 0.80 0.43 0.49 036 041
Braun 1.00 1.00  0.84 093 0.63 0.93 0.46 0.93 0.43 0.88 042  0.88
Cichelli 1.00 1.00 093 0.97 0.77 0.97 0.56 0.97 042  0.36 0.41 0.33
Clausify 1.00 1.00  0.79  0.59 0.59 059 048 0.59 0.41 0.42 0.41 0.42
CountDown 1.00 1.00  0.95 0.97 0.86 0.97 0.70 0.97 0.49 0.53 0.31 0.33
Fib 1.00 1.00 1.28 2.33 1.21 2.33 0.96 2.33 0.75 200 035 0.33
KnuthBendix  1.00 1.00  0.81 0.66  0.63 0.66 048 0.66 0.43 0.58 0.40 049
Mate 1.00 1.00  0.83 0.45 0.67 0.45 0.50 0.45 0.43 0.29 040 025
MSS 1.00 1.00  0.92 1.00  0.84 1.00  0.61 1.00 0.38 0.51 024  0.03
OrdList 1.00 .00 0.73 0.67 0.55 0.67 0.42 0.67 042  0.67 042  0.67
PermSort 1.00 1.00  0.77 0.77 0.62 0.77 0.48 0.77 042  0.69 042  0.69
Queens 1.00 1.00  0.75 0.54  0.68 054 051 0.54 040  0.39 0.21 0.11
Queensy 1.00 1.00 082 092 0.67 092 055 0.92 050  0.77 050  0.73
SumPuz 1.00 1.00  0.95 1.06  0.80 1.06  0.60 1.05 050 074 048 0.63
Taut 1.00 1.00 090  0.99 070 099  0.56 0.99 0.51 090 050 0.87
While 1.00 1.00 093 0.95 0.77 0.95 0.58 0.95 0.50  0.81 049  0.80
Average 1.00 1.00  0.88 092 074 092 057 0.92 0.47 0.69 040  0.50
Table 3. Impact of optimisations on clock-cycle count and heap usage across a range of programs.
Performance Table 3 shows that, overall, update avoidance offers e an integer reduction is required after e is evaluated; and

a significant run-time improvement. On average, 88% of all updates
are avoided across the 16 benchmark programs. Just over half of
these are avoided due to non-reducible applications, and just under
half of them are avoided due to non-shared reducible applications.
The average maximum update-stack usage drops from 406 to 11.

5.2 Infix Primitive Applications

For every binary primitive function p, we introduce a new primitive
*p, a version of p that expects its arguments flipped.

> prim (°*’:p) nm = prim pm n

Any primitive function p can be flipped.

> flip (°*’:p) = p
> flip p = ’*’:p

Now we translate binary primitive applications by the rule
pmn — mpn “)

In place of the existing reduction rules for primitives and integers,
we define:

> step (p, h, INT m:PRI £:INT n:s, u) =
> (p, h, prim f m n:s, u)

> step (p, h, INT m:PRI f:x:s, u) =

> (p, h, x:PRI (flip £):INT m:s, u)

If both arguments are already evaluated, the primitive is applied.
If only the first argument is evaluated, then the arguments are
swapped and the primitive is flipped.

Note that compilation rule (4) could just as sensibly be

pmn — nxpm (®)]

In the interest of efficiency, the choice between (4) and (5) is in-
formed for each primitive application by compile-time knowledge
of whether m or n is expected to be already-evaluated.

Example Consider the steps needed to evaluate (+) eg e1. Using
the approach to primitive reduction of §3.1, the application is trans-
lated to e; (eo (+)) at compile time. At run-time, in four successive
clock-cycles:

e an integer reduction is required after e; is evaluated;

e an unwinding is required to fetch argument eg (+) from heap;

e a primitive reduction is required.

With the new approach, the application is translated to eg (+) e at
compile-time. At run-time, in two successive clock-cycles:

e an integer reduction is required after e is evaluated; and
e a primitive reduction is required after e; is evaluated.

Also note that ey (+) e; comprises one application whereas
e1 (eo (+)) comprises two, so the former is cheaper to instanti-
ate. Table 3 shows run-time and heap-usage improvements brought
by the new approach.

5.3 Speculative Evaluation of Primitive Redexes

Consider evaluation of the expression tri 5. Application of tri
yields the expression

case (=) 5 1 of
{ False -> (+) (tri ((-) 51)) 5 ; True -> 1 }

which contains two primitive redexes: (<=) 5 1 and (-) 5 1.
This section introduces a technique called primitive-redex specu-
lation (PRS) in which such redexes are evaluated during function
body instantiation. For example, application of tri instead yields

case False of { False -> (+) (tri 4) 5 ; True -> 1 }

The benefit is that primitive redexes need not be constructed in
memory, nor fetched again when needed. Even if the result of
a primitive redex is not needed, reducing it is no more costly
than constructing it. We identify primitive redexes at run-time, by
dynamic analysis.

Register File To support PRS, we introduce a register file to the
reduction machine, for storing the results of speculative reductions.

> type RegFile = [Atom]
The body of a function may refer to these results as required.

> data Atom = --- | REG Bool Int

An atom of the form REG b ¢ contains a reference ¢ to a register,
and a boolean field b that is true exactly if there is more than one
reference to the register in the body of the function.

The instantiation functions inst and instApp are modified to
take the register file r as an argument, and the following equation
is added to the definition of inst.



> inst s r base (REG sh i) = dashIf sh (r !! i)

Waves The primitive redexes in a function body are evaluated in
a series of waves. To illustrate, consider (+) 1 ((+) 2 3).Inthe
first wave of speculative evaluation, (+) 2 3 would be reduced to
5; in the second wave, (+) 1 5 would be reduced to 6.

More specifically, a wave is a list of independent primitive redex
candidates. A primitive redex candidate is an application which
may turn out at run-time to be a primitive redex. Specifically, it is
an application of the form [ao, PRI p, a1] where ao and a; are
INT, ARG or REG atoms.

> type Wave = [App]

Templates are extended to contain a list of waves in which no
application in a wave depends on the result of an application in
the same or a later wave.

> type Template = (Arity, App, [Appl, [Wavel)

Given the reduction stack, the heap, and a series of waves, PRS pro-
duces a possibly-modified heap, and one result for each application
in each wave.

> prs :: Stack -> Heap -> [Wave] -> (Heap, RegFile)
> prs s h = foldl (wave s) (h, []1)

> wave s (h,r) = foldl spec (h,r) . map (instApp s r h)

If a primitive redex candidate turns out to be a primitive redex at
run-time, it is reduced, and its result is appended to the register file.
Otherwise, the candidate application is constructed on the heap, and
a pointer to this application is appended to the register file.

> spec (h,r) [INT m,PRI p,INT n] = (h, r++[prim p m n])
> spec (h,r) app = (h++[app]l, r++[PTR False (length h)])

Function Application Since applications in a function body may
refer to the results in the PRS register file, PRS is performed before
instantiation of the body. The new rule is:

> step (p, h, FUN n f:s, uw) = (p, h’’, s’, u)
>  where

> (pop, spine, apps, waves) =p !! f

> (h’, r) = prs s h waves

> s’ = instApp s r h’ spine ++ drop pop s
> h’’ = h’ ++ map (instApp s r h’) apps

The template splitting technique outlined in §4.2 is modified to deal
with waves of primitive redex candidates. Each wave is split into a
separate template. If a wave contains more than MaxAppsPerBody
applications, it is further split in order to satisfy the constraint.

Strictness Analysis PRS works well when recursive call sites
sustain unboxed arguments>. For example, if a call to tri is passed
an unboxed integer then, thanks to PRS, so too is the recursive call.
However, if the initial call is passed a boxed expression, primitive
redexes never arise, e.g. the outer call in tri (tri 5) is passed a
pointer to an application, inhibiting PRS.

A basic strictness analyser in combination with the worker-
wrapper transformation [Gill and Hutton 2009] alleviates this prob-
lem. Each initial call to a recursive function is replaced with a call
to a wrapper function. The wrapper applies a special primitive to
force evaluation of any strict integer arguments before passing them
on to the recursive worker.

Performance Table 3 shows how PRS cuts run-time and heap-
usage over the range of benchmark programs. On average, the
maximum stack usage drops from 811 to 104, and 85% of primitive
redex candidates turn out to be primitive redexes.

2 An unboxed integer is an integer literal INT n as opposed to a pointer
PTR z to an expression of type integer.

GHC -02 Clean Hand reds.
Program Lines Run-time Run-time per Cycle
Adjoxo 108 0.18 0.26 0.65
Braun 51 0.35 0.29 0.46
Cichelli 200 0.17 0.12 0.52
Clausify 132 0.33 0.27 0.54
CountDown 120 0.42 0.26 0.62
Fib 10 0.14 0.14 0.90
KnuthBendix 551 0.37 0.21 0.47
Mate 393 0.10 0.16 0.52
MSS 47 0.17 0.11 0.65
OrdList 46 0.64 - 0.43
PermSort 39 0.43 0.37 0.43
Queens 49 0.17 0.38 0.72
Queenss 62 0.34 0.31 0.40
SumPuz 158 0.23 0.21 0.46
Taut 97 0.32 0.16 0.46
While 96 0.27 0.19 0.49
Average 135 0.29 0.23 0.55

Table 4. Normalised run-times of GHC and Clean compiled code
running on an Intel Core 2 Duo E8400 PC clocking at 3GHz. Run-
times are relative to 1.00, the run-time of Reduceron running on a
Xilinx Virtex-5 FPGA clocking at 96MHz (over 30x slower).

6. Comparative Evaluation

This section evaluates the Reduceron in the context of previous and
current work on functional language implementation.

6.1 Benchmark programs

The performance of the Reduceron is measured using a set of 16
benchmark programs named in Table 4. The programs, though
small (the largest is 551 lines), are diverse and fairly representative
of functional programs in general. For details of the programs,
including source code, see [Naylor et al. 2009].

6.2 Previous work on the Reduceron

Compared to our previous work on the Reduceron presented in
[Naylor and Runciman 2007], the implementation described in this
paper reduces the number of clock-cycles required to run the bench-
mark programs by an average factor of 6.4. As the previous imple-
mentation clocks at 111MHz, and the new one at 96MHz on the
same FPGA, the raw speed-up factor is 5.5. The gains are mainly
due to the combined impact of improved case-expression compila-
tion, single-cycle reduction, and the optimisations listed in Table 3.
But another factor is that the new implementation performs spine-
less evaluation [Burn et al. 1988]. During function application, the
spine of a function body is only written onto the stack, reducing
heap contention and heap usage. The spine is only ever written to
the heap during updating, and even then, only if it is a possibly-
shared normal-form. Spineless evaluation also avoids the problem
of indirection chains, and is more modular in the sense that it allows
function application to be conceptually separated from updating.

6.3 State of the Art

A run-time performance comparison of the Reduceron against
state-of-the-art functional language implementations running on
a 3GHz Intel Core 2 Duo PC is shown in Table 4°.

Given the speed-up over our previous implementation of the Re-
duceron, we had hoped that the performance of our new implemen-

3 The Clean-compiled version of the OrdList program does not terminate
due to a bug in the Clean compiler.



tation would approach that of the PC implementations. However,
new GHC optimisations and the use of a 3GHz Core 2 Duo instead
of a 2.8GHz Pentium-4 have significantly boosted the PC results.
(The Dhrystone MIPS (DMIPS) per MHz of the Core 2 Duo is al-
most twice that of the Pentium-4 [Longbottom 2009].)

It would be interesting to compare the Reduceron against GHC
or Clean compiled programs running on an FPGA soft-processor
such as the Xilinx MicroBlaze. Unfortunately, this experiment
would be quite an undertaking since the run-time system of GHC or
Clean would need to be ported to the FPGA environment. We can,
however, point out that the Core 2 Duo achieves almost three times
as many DMIPs per MHz as the Xilinx MicroBlaze [MicroBlaze],
and clocks 14 times faster. So the performance ratio for this conven-
tional benchmarking is around 42. The performance ratio between
the Reduceron and the PC is an order of magnitude less.

Table 4 also shows hand-reductions per clock-cycle. A hand-
reduction is the application of a function or a primitive function;
it includes applications of functions introduced by case compila-
tion, but does not include updating, unwinding, integer reduction,
constructor reduction, or applications of functions introduced by
template splitting.

6.4 Modern Processors

Modern microprocessors are the product of almost half a century of
intensive engineering. Instruction pipelines with tens of stages have
helped achieve clock frequencies in the region of 3-4GHz. Tech-
niques such as dynamic branch prediction, out of order execution,
and caching have enabled high utilisation of such deep pipelines.
The Reduceron represents a different kind of processor: a vector
processor. Rather than process one word at a time, it processes sev-
eral in parallel. It is not pipelined, so the sophisticated techniques
needed to keep rapidly-clocked pipelines busy are not needed.

6.5 The G-machine

In [Peyton Jones 1987], template instantiation is presented as a
“simple” first step towards a more sophisticated approach to graph
reduction based on the G-machine. So why is the Reduceron based
on template instantiation and not the G-machine?

The G-machine approach aims to generate good code for con-
ventional hardware, exploiting its strengths and avoiding its weak-
nesses. We base the Reduceron on template instantiation precisely
because it does not make assumptions about the target hardware.
The G-machine executes a sequential stream of fine-grained in-
structions, many of which could in fact be executed in parallel. The
FPGA negates the assumption that such a sequential stream of in-
structions is necessary to avoid interpretive overhead.

6.6 Manipulating Basic Values

One aspect of reduction that the G-machine approach aims to opti-
mise is the processing of basic values such as integers. In particu-
lar, avoiding construction of strictly-needed primitive applications
in memory can lead to large performance gains. For example, if
a function body has the form £ ((+) x 1) and £ is strict then
construction of (+) x 1 on the heap can be avoided and instead
reduced immediately.

The Reduceron can also avoid construction of primitive applica-
tions to good effect (§5.3). However, it discovers suitable primitive
applications at run-time and evaluates them speculatively. The Re-
duceron allows construction of (+) x 1 to be avoided regardless
of whether or not £ is strict, but only if x, at run-time, takes the
form INT i.

So the conditions under which construction of primitive ap-
plications can be avoided are quite different between the two ap-
proaches. As discussed in §5.3, strictness analysis can aid PRS.
But strictness analysis alone, without some mechanism for reduc-

ing primitive redexes cheaply, is of little use to the Reduceron. PRS
provides such a mechanism.

6.7 The SKIM Machine

SKIM is a microcoded processor designed specifically to perform
combinator reduction [Stoye 1985]. Stoye writes that “a combina-
tor reducer coded on an 8-MHz 68000 goes at about one thirtieth
of the speed of SKIM, and was considerably harder to write than
SKIM’s microcode”.

One interesting aspect of SKIM is its use of one-bit reference
counts. Stoye observes that such reference counts can be stored in
the pointer to an application rather than in the application itself,
making useful information about an application available without
the expense of dereferencing a pointer. A reference count bit indi-
cates whether the pointer is a unique application pointer or mul-
tiple application pointer. This information is used to good effect
in SKIM by allowing the space pointed to by a unique pointer to
be reused during reduction rather than discarded. On average about
70% of discarded cells are immediately reused.

SKIM’s successful use of reference-count bits partly motivated
the development of the dynamic sharing analysis presented in §5.1.
We have precisely specified the modifications needed to implement
dynamic sharing analysis in a general graph reduction machine. We
also discuss two important details not mentioned by Stoye: (1) the
subtle case in which an update can cause a unique pointer to be-
come non-unique; and (2) Invariant 3, an important key to under-
standing why the technique actually works. We use the results of
the analysis not for storage reclamation (which would complicate
the machinery for template instantiation), but for update avoidance.

6.8 Static versus Dynamic Analysis

Sharing Analysis The idea to avoid updates by identifying non-
shared applications is discussed in [Burn et al. 1988], including
trade-offs between static and dynamic sharing analysis. The authors
write that dynamic sharing analysis has the advantage of greater
precision but that “in general we strongly suspect that the cost of
dashing greatly outweighs the advantages of precision when com-
pared to [static analysis]”. In the Reduceron, dynamic sharing anal-
ysis (dashing) has no time cost: it is implemented in combinatorial
logic that is not on the Reduceron’s critical path. It is precise and
simple to implement, requiring only minor modifications to three
of the Reduceron’s reduction rules.

Primitive Redex Analysis Primitive redexes can also be detected
by static or dynamic analysis. In our experience, a dynamic ap-
proach is simple and cheap to implement in hardware, and works
quite well. As an alternative, we are currently trying a static analy-
sis to determine expressions whose every instance at run-time will
be a primitive redex. The analysis can be combined with specialisa-
tion to increase the incidence of such expressions. Eliminating the
logic and memory capacity needed to handle failed PRS candidates
could significantly boost performance.

6.9 The Big Word Machine

A prototype machine similar in spirit to the Reduceron is Augusts-
son’s Big Word Machine (BWM) [Augustsson 1992]. The BWM
is a graph reduction machine with a wide word size, four pointers
long, allowing wide applications to be quickly built on, and fetched
from, the heap. Augustsson likens the BWM to a VLIW (very
long instruction word) machine [Hennessy and Patterson 1992],
designed for functional languages rather than scientific computing.
Like the Reduceron, the BWM has a crossbar switch attached to
the stack allowing complex rearrangements to be done in a single
clock-cycle. The BWM also uses the Scott encoding to imple-
ment case expressions and constructors. Unlike the Reduceron,



the BWM works on an explicit instruction stream rather than by
template instantiation. The BWM was never actually built. Some
simulations were performed but Augustsson writes “the absolute
performance of the machine is hard to determine at this point”.

7. Conclusions and Future Work

Considering their relatively low clocking frequencies, FPGA appli-
cations must exploit significant parallelism to achieve high perfor-
mance. In the context of sequential graph-reduction, we have taken
this idea to its natural limit: each reduction rule is performed within
one clock-cycle. Furthermore, upon synthesis our design achieves
a respectable clock frequency compared to similar FPGA designs
for the same device. It is therefore quite hard to see how the Reduc-
eron’s reduction rules could be performed more quickly.

On the other hand, there is a lot of scope to reduce the num-
ber of reductions performed in a given program run. To this end,
update avoidance and speculative evaluation of primitive redexes
are both effective, making use of simple and precise dynamic anal-
yses. These dynamic analyses would have a prohibitive run-time
overhead on a PC, but have no such overhead on an FPGA.

Compared to state-of-the-art functional language implementa-
tions running on a PC, the Reduceron implemented on a FPGA
is on average around a factor of four slower. This difference may
be disappointing, but it is an order of magnitude smaller than the
typical performance gap between PC-based hard-processors and
FPGA-based soft-processors.

Future Work The main limitation of the current Reduceron im-
plementation is the small amount of heap memory it provides.
Could the heap be implemented using a larger, off-chip memory
unit? We believe it could, without loss of performance, and with-
out significant modification to the existing design. Two possible
options are: (1) the use of low-latency memory technologies such
as RLDRAM, ZBT RAM, and QDR SRAM, commonly used by
FPGA applications that require access to large amounts of mem-
ory; and (2) the use of buffers or caches, implemented using on-
chip block RAM.

Functional languages offer much scope for parallel evaluation
of expressions. On conventional architectures there is a high cost
for operations such as locking and releasing expressions under eval-
uation, so the benefits of parallel evaluation are offset by significant
communication overheads. It would be interesting to see if special-
purpose hardware could be used to overcome such overheads. Mul-
tiple Reducerons could be synthesised to FPGA, coordinated for
parallel graph reduction [Clack 1999].

One of the main features of FPGAs that we are not exploiting
is that they can be configured on a per-program basis. One option
would be to allow programmers to express, as part of their pro-
gram, custom FPGA logic that accelerates execution of that pro-
gram. Such logic would act as co-processor to the Reduceron, and
could itself be suitably described in the functional source language.

The future development and competitiveness of special-purpose
processors for graph reduction remains questionable. But within
a few years, just as plug-in GPU cards are already used for
high-performance graphics, we’d like to see FPU cards for high-
performance applications of functional languages. We hope our
work on the Reduceron makes a small advance in that direction.
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